A Numerical Study on the Crack Propagation of Homogenized Micro-Crack Crushing for Concrete Pavement
Abstract
:1. Introduction
2. Numerical Simulation
2.1. Numerical Modeling
2.2. Failure Criterion
3. Results and Discussion
3.1. Crack Development Law under a Single Impact Head
3.2. Crack Development Law and Cracked Core Morphology of Multi-Impact Heads
3.3. Comparative Analysis of Fracture Law with Indoor Low-Velocity Impact Tests
3.4. Discussion
4. Optimization of Homogenized Micro-Crack Crushing Hammer
4.1. Research on In Situ Micro-Crack Homogenization of Concrete Pavement
4.2. Optimization of Homogenized Micro-Crack Crushing Hammer
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, Z.J.; Ling, J.M.; Hung, Q.L. Research on resonant rubblized effects of PCC pavement. China J. Highw. Transp. 2008, 21, 26–32. (In Chinese) [Google Scholar]
- Ma, J.; Sun, S.Z.; Rui, H.T.; Wang, L.; Ma, Y.; Zhang, W.W.; Zhang, W.; Liu, H.; Chen, H.Y.; Liu, J.; et al. Review on China’s road construction machinery research progress: 2018. China J. Highw. Transp. 2018, 21, 136–139. (In Chinese) [Google Scholar]
- Liu, L.; Wu, S.H.; Xie, W.K.; Yao, G. Numerical analysis of rehabilitated concrete pavement using crack-and-seating technique. Int. J. Pavement Eng. 2021, 22, 1250–1262. [Google Scholar] [CrossRef]
- Chen, C.; Lin, S.; Williams, R.C.; Ashlock, J.C. Non-destructive modulus testing and performance evaluation for asphalt pavement reflective cracking mitigation treatments. Balt. J. Road Bridge Eng. 2018, 13, 46–53. [Google Scholar] [CrossRef]
- Ceylan, H.; Gopalakrishnan, K.; Coree, B.J.; Kota, T.; Mathews, R. Rehabilitation of concrete pavements utilizing rubblization: A mechanistic based approach to HMA overlay thickness design. Int. J. Pavement Eng. 2008, 9, 45–57. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.H.; Huang, Q.L.; Ling, J.M. Shanghai’s Experience on Utilizing the Rubblization for Jointed Concrete Pavement Rehabilitation. J. Perform. Constr. Facil. 2008, 22, 398–407. [Google Scholar] [CrossRef] [Green Version]
- Qiu, X.; Ling, J.M.; Wang, F. Concrete pavement rehabilitation procedure using resonant rubblization technology and mechanical-empirical based overlay design. Can. J. Civ. Eng. 2014, 41, 32–39. [Google Scholar] [CrossRef]
- Ge, Z.S.; Li, H.; Han, Z.T.; Zhang, Q.S. Properties of cold mix asphalt mixtures with reclaimed granular aggregate from crushed PCC pavement. Constr. Build. Mater. 2015, 77, 404–408. [Google Scholar] [CrossRef]
- Li, W.J.; Zhang, Q.L.; Zhi, Z.H.; Feng, C.; Cai, Y.C.; Yue, J.C. Investigation on the fracture mechanism of homogenized micro-crack crushing technology for portland cement concrete pavement rehabilitation. AIP Adv. 2019, 9, 075113. [Google Scholar] [CrossRef] [Green Version]
- Nia, A.A.; Hedayatian, M.; Nili, M.; Sabet, V.A. An experimental and numerical study on how steel and polypropylene fibers affect the impact resistance in fiber-reinforced concrete. Int. J. Impact Eng. 2012, 46, 62–73. [Google Scholar]
- Sakthivel, P.B.; Ravichandran, A.; Alagamurthi, N. Impact strength of hybrid steel mesh-and-fiber reinforced cementitious composites. KSCE J. Civ. Eng. 2015, 19, 1385–1395. [Google Scholar] [CrossRef]
- Yahaghi, J.; Muda, Z.C.; Beddu, S.B. Impact resistance of oil palm shells concrete reinforced with polypropylene fibre. Constr. Build. Mater. 2016, 123, 394–403. [Google Scholar] [CrossRef]
- Elavarasi, D.; Mohan, K.S.R. On low-velocity impact response of SIFCON slabs under drop hammer impact loading. Constr. Build. Mater. 2018, 160, 127–135. [Google Scholar] [CrossRef]
- Othman, H.; Marzouk, H. An experimental investigation on the effect of steel reinforcement on impact response of reinforced concrete plates. Int. J. Impact Eng. 2016, 88, 12–21. [Google Scholar] [CrossRef]
- Othman, H.; Marzouk, H. Impact response of ultra-high-performance reinforced concrete plates. ACI Struct. J. 2016, 113, 1325–1334. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, B.; Fujikake, K. Behavior of Reinforced Concrete Slabs under Low-Velocity Impact. ACI Struct. J. 2017, 114, 643–658. [Google Scholar] [CrossRef]
- Yoo, D.Y.; Yoon, Y.S. Influence of steel fibers and fiber-reinforced polymers on the impact resistance of one-way concrete slabs. J. Compos. Mater. 2014, 48, 695–706. [Google Scholar] [CrossRef]
- Ganesan, P.; Kumar, S.V.S. FE modelling of low velocity impact on RC and prestressed RC slabs. Struct. Eng. Mech. 2019, 71, 515–524. [Google Scholar]
- Anil, O.; Kantar, E.; Yilmaz, M.C. Low velocity impact behavior of RC slabs with different support types. Constr. Build. Mater. 2015, 93, 1078–1088. [Google Scholar] [CrossRef]
- Yi, W.J.; Shi, X.D. Numerical simulation analysis for RC shear walls under impact load. J. Vib. Shock. 2019, 38, 102–110. (In Chinese) [Google Scholar]
- Luo, J.; Xiao, J.C.; Ma, K.J.; Mao, J.Y.; Zhang, H. Energy dissipation performance of a sand cushion on steel-concrete composite beam under the impact load of rockfall. J. Vib. Shock. 2019, 38, 249–256. (In Chinese) [Google Scholar]
- Broadhouse, B.J.; Neilson, A.J. Modelling reinforced concrete structures in DYNA-3D. In Proceedings of the DYNA3D User Group Conference, London, UK, 24 September 1987. [Google Scholar]
- Broadhouse, B.J. The Winfrith Concrete Model in LS-DYNA3D; Rep. SPD/D(95)363; Structural Performance Department, AEA Technology, Winfrith Technology Centre: Carlsbad, CA, USA, 1995. [Google Scholar]
- Hallquist, J.Q. LS-DYNA Keyword User’s Manual, Revision 971; Livermore Software Technology Corporation: Livermore, CA, USA, 2007. [Google Scholar]
- Zhu, X.Y.; Pan, R.; Lin, G.; Li, L. FEM analysis of impact experiments with steel plated concrete walls based on ANSYS/LS-DYNA. Explos. Shock. Waves 2015, 35, 222–228. (In Chinese) [Google Scholar]
Parameters | Hammer, Bearing Plate, and Impact Head | Concrete Slab |
---|---|---|
Density (kg/m3) | 7850 | 2400 |
Young’s modulus (GPa) | 200 | 28 |
Poisson’s ratio | 0.25 | 0.2 |
Uniaxial compressive strength (MPa) | 40 | |
Tensile strength (MPa) | 5 |
Concrete Slab Size (mm) | Impact Velocity (m/s) | Drop Hammer Weight (kg) |
---|---|---|
300 × 300 × 50 | 3 | 10 |
4 | 10 | |
5 | 10 | |
300 × 300 × 80 | 4 | 17 |
5 | 17 | |
6 | 17 |
Concrete Slab Size (mm) | Drop Height (mm) | Drop Hammer Weight (kg) |
---|---|---|
500 × 500 × 60 | 600 | 10 |
600 × 600 × 60 | 800 | 10 |
700 × 700 × 60 | 1000 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Guo, Y.; Liang, B.; Yue, J. A Numerical Study on the Crack Propagation of Homogenized Micro-Crack Crushing for Concrete Pavement. Appl. Sci. 2022, 12, 7114. https://doi.org/10.3390/app12147114
Li W, Guo Y, Liang B, Yue J. A Numerical Study on the Crack Propagation of Homogenized Micro-Crack Crushing for Concrete Pavement. Applied Sciences. 2022; 12(14):7114. https://doi.org/10.3390/app12147114
Chicago/Turabian StyleLi, Wenjie, Ying Guo, Bin Liang, and Jinchao Yue. 2022. "A Numerical Study on the Crack Propagation of Homogenized Micro-Crack Crushing for Concrete Pavement" Applied Sciences 12, no. 14: 7114. https://doi.org/10.3390/app12147114
APA StyleLi, W., Guo, Y., Liang, B., & Yue, J. (2022). A Numerical Study on the Crack Propagation of Homogenized Micro-Crack Crushing for Concrete Pavement. Applied Sciences, 12(14), 7114. https://doi.org/10.3390/app12147114