Study on Noise Model of an Automotive Axial Fan Based on Aerodynamic Load Force
Abstract
:1. Introduction
2. Establishment of Axial Fan Blade Loading Force
2.1. BEM Theory
2.2. Steady Force
2.3. Unsteady Forces
2.4. The Loading Force Varies with the Chord Length of the Blade
3. Noise Model of Automotive Axial Fan
3.1. Establishment of Fan Mathematical Model Noise
3.2. Time–Domain Solution of Fan Noise Model
3.2.1. Coordinate Conversion
3.2.2. Time–Domain Solution of Delay Equation
4. Calculation Simulation and Verification of Automotive Axial Fan
4.1. Theoretical Calculation of Automotive Axial Fan Noise
4.1.1. Structural Parameter Setting
4.1.2. Analysis of Theoretical Calculation Results of Noise
- (1)
- Calculation results of load distribution
- (2)
- Noise calculation results
- (3)
- Calculation results of noise spectrum
4.2. Noise Verification of Automotive Axial Fan
4.2.1. Automotive Axial Fan Noise Simulation Settings and Analysis Results
- (1)
- Establishment of simulation model
- (2)
- Grid division
- (3)
- Calculation method and setting of initial conditions
- (4)
- Simulation analysis results
- (1)
- The total sound pressure levels corresponding to 0.005 mm, 0.01 mm, and 0.02 mm are 72.3 dB(A), 71.8 dB(A), and 69.7 dB(A), respectively. The results for the first boundary layer at 0.01 mm and 0.005 mm are very close in terms of the total sound pressure level.
- (2)
- As shown in Figure 10, the noise peaks corresponding to 0.01 mm and 0.005 mm are no more than 3 dB(A) in the whole-frequency band, whereas the noise peak corresponding to 0.02 mm is up to 8 dB(A) in some frequency bands. The results for the first boundary layer at 0.01 mm and 0.005 mm are very close in terms of the sound spectrum.
- (3)
- The accuracy of the first boundary layer at 0.02 mm is low, whereas that at 0.005 mm increases the number of grids and reduces the speed of the simulation. In order to ensure the accuracy and speed of the calculation, the grid size of the first boundary layer at 0.01 mm is adopted in the following simulation.
4.2.2. Experimental Settings and Analysis Results of Automotive Axial Fan Noise
- (1)
- Experimental Settings
- (2)
- Experimental analysis results
4.2.3. Noise Simulation and Experimental Verification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Available online: https://repairpal.com/radiator-fan-assembly (accessed on 6 June 2020).
- Abbas, A.; Elwali, W.; Haider, S.; Dsouza, S.; Sanderson, M.; Segan, Y. CAE Cooling Module Noise and Vibration Prediction Methodology and Challenges; SAE Technical Paper; SAE: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Mo, J.O.; Choi, J.H. Numerical Investigation of Unsteady Flow and Aerodynamic Noise Characteristics of an Automotive Axial Cooling Fan. Appl. Sci. 2020, 6, 5432. [Google Scholar]
- Brooks, T.; Pope, D.; Marcolini, M. Airfoil Self-Noise and Prediction; Technical Report; NASA Reference Publication: Hampton, VA, USA, 1989; p. 1218. Available online: https://ntrs.nasa.gov/search.jsp?R=19890016302 (accessed on 6 June 2020).
- Park, S.M.; Ryu, S.Y.; Cheong, C.; Kim, J.W.; Park, B.I.; Ahn, Y.C.; Oh, S.K. Optimization of the orifice shape of cooling fan units for high flow rate and low-level noise in outdoor air conditioning units. Appl. Sci. 2019, 9, 5207. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q. Aeroacoustics Fundamentals; National Defense Industry Press: Beijing, China, 2012. [Google Scholar]
- Sun, Y.; Xiao, S.; Xu, X.; Fan, S. Analysis of Aerodynamic Noise Induced by Rotating Blades of an Axial Fan. Noise Vib. Control 2016, 36, 124–128. [Google Scholar]
- Zuo, S.; Hu, Q.; Han, H.; Kang, Q. Influence of blade thickness on regenerative blower’s blade noise. J. Vib. Shock. 2014, 33, 130–133. [Google Scholar]
- Zhong, Y.; Li, Y.; Li, P.; Chen, J.; Xia, T.; Kuang, X. Blade Structure Design Based on Multi-objective Optimization of Automotive Fan. In Proceedings of the Asia-Pacific Conference on Image Processing, Electronics and Computers, Dalian, China, 14–16 April 2021; Beijing Institute of Physics: Beijing, China, 2021. [Google Scholar]
- Zeng, M.; Zhu, W.; Sun, Z.; Zheng, D.; Li, S. Influence parameters of wind turbine blade aerodynamic noise. Appl. Acoust. 2020, 39, 924–931. [Google Scholar]
- Zheng, B. Optimization Design of Axial Flow Cooling Fan for Vehicle. Master’s Thesis, Chongqing University, Chongqing, China, 2018. [Google Scholar]
- Qian, Z. Prediction of the Noise for the Wind Turbine Rotating Blade Based on FW-H Equation. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2013. [Google Scholar]
- Liu, G.; Wang, L.; Liu, X. Numerical Study on Aerodynamic Performance and Noise Characteristics of Axial Flow Fan with Tip Vane. J. Xi’an Jiaotong Univ. 2020, 54, 105–112. [Google Scholar]
- Tian, J. Study on Complicate Flow and Aerodynamic Noise of Axial Flow Fan System in Outdoor Units of Room Air Conditioners. Ph.D. Thesis, Shanghai Jiao Tong University, Shanghai, China, 2009. [Google Scholar]
- Oerlemans, S. Wind Turbine Noise: Primary Noise Sources; Technical Report; National Aerospace Laboratory NLR (Royal Netherlands Aerospace Centre): Amsterdam, The Netherlands, 2011; Available online: https://reports.nlr.nl/xmlui/bitstream/handle/10921/117/TP-2011-066.pdf (accessed on 6 June 2020).
- Wang, H. Fluid Mechanics; National Defense Industry Press: Beijing, China, 2014. [Google Scholar]
- Goldstein, M.E.; Yan, Z. Aeroacoustics; National Defense Industry Press: Beijing, China, 2014. [Google Scholar]
- Debertshäuser, H.; Shen, W.Z.; Zhu, W.J. Aeroacoustic calculations of a full scale Nordtank 500 kW wind turbine. J. Phys. Conf. Ser. 2016, 753, 022032. [Google Scholar] [CrossRef]
- Rynell, A.; Chevalier, M.; Åbom, M.; Efraimsson, G. A numerical study of noise characteristics originating from a shrouded subsonic automotive fan. Appl. Sci. 2018, 140, 110–121. [Google Scholar] [CrossRef]
- Zhong, Y.; Li, Y.; Gao, F. Study on the discrete noise and blade distribution characteristics of a vehicle axial fan. China Mech. Eng. 2019, 30, 1072–1080. [Google Scholar]
- Franzke, R.; Sebben, S.; Bark, T.; Willeson, E.; Broniewicz, A. Evaluation of the multiple reference frame approach for the modelling of an axial cooling fan. Energies 2019, 12, 2934. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Guo, P.; Wang, Z.; Wang, J.; Wang, M.; Zhu, J.; Wu, D. Calculation of external vehicle aerodynamic noise based on les subgrid model. Energies 2020, 13, 1822. [Google Scholar] [CrossRef]
Sections | Radius/m | Installation Angle° | Chord Length/m |
---|---|---|---|
Section 1 | 0.088000 | 35.0 | 0.0544 |
Section 2 | 0.097708 | 32.8 | 0.0568 |
Section 3 | 0.107417 | 30.7 | 0.0589 |
Section 4 | 0.117125 | 28.7 | 0.061 |
Section 5 | 0.126833 | 26.9 | 0.0631 |
Section 6 | 0.136542 | 25.1 | 0.0652 |
Section 7 | 0.146250 | 23.6 | 0.0674 |
Section 8 | 0.155958 | 22.2 | 0.0699 |
Section 9 | 0.165667 | 21.1 | 0.0721 |
Section 10 | 0.175375 | 20.0 | 0.0746 |
Section 11 | 0.185083 | 19.2 | 0.0775 |
Section 12 | 0.194792 | 18.6 | 0.0806 |
Section 13 | 0.204500 | 18.0 | 0.0728 |
Radii/m | 0.0818 | 0.112475 | 0.14315 | 0.2045 |
---|---|---|---|---|
Bending angles/ | 0 | −4 | 0 | 12 |
Unit of Noise | Numerical Calculation Value | Simulation Value | Experimental Value |
---|---|---|---|
dB(A) | 71.3 | 71.8 | 73.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, Y.; Li, Y.; Li, J. Study on Noise Model of an Automotive Axial Fan Based on Aerodynamic Load Force. Appl. Sci. 2022, 12, 7326. https://doi.org/10.3390/app12147326
Zhong Y, Li Y, Li J. Study on Noise Model of an Automotive Axial Fan Based on Aerodynamic Load Force. Applied Sciences. 2022; 12(14):7326. https://doi.org/10.3390/app12147326
Chicago/Turabian StyleZhong, Yinhui, Yinong Li, and Jun Li. 2022. "Study on Noise Model of an Automotive Axial Fan Based on Aerodynamic Load Force" Applied Sciences 12, no. 14: 7326. https://doi.org/10.3390/app12147326
APA StyleZhong, Y., Li, Y., & Li, J. (2022). Study on Noise Model of an Automotive Axial Fan Based on Aerodynamic Load Force. Applied Sciences, 12(14), 7326. https://doi.org/10.3390/app12147326