Seepage Characteristics Study of Single Rough Fracture Based on Numerical Simulation
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Theoretical Background
2.2. Numerical Simulation Model
2.3. Parameters of Numerical Simulation
3. Results and Discussion
3.1. Fracture Roughness, Discharge per Unit Width, and Hydraulic Gradient
3.2. Fracture Aperture and Hydraulic Gradient
3.3. Super-Cubic Phenomenon of Seepage in Rough Fractures
3.4. Effect of Rough Element Shape and Density on Permeability Coefficient
4. Conclusions
- In wider rough fractures, the flow rate mainly depends on fracture aperture, while in narrow and close rough fracture medium, the surface roughness of fracture wall becomes the main factor of head loss of seepage.
- In rough fracture, there is a negative power exponential relation between the hydraulic gradient index m and the average fracture aperture , i.e., with the increase of fracture aperture , the relative roughness of fracture and the influence of hydraulic gradient both decrease.
- In symmetrical-uncoupled rough fractures, there is a super-cubic relation between the discharge per unit width q and average aperture .
- The value of rough fracture permeability coefficient K is not a constant, and it is affected by the scale effect (the horizontal distance from the measuring point to the fracture inlet) and the density of the roughness elements.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Berkowitz, B. Characterizing flow and transport in fractured geological media: A review. Adv. Water Resour. 2002, 25, 861–884. [Google Scholar] [CrossRef]
- Taucare, M.; Viguier, B.; Daniele, L.; Heuser, G.; Arancibia, G.; Leonardi, V. Connectivity of fractures and groundwater flows analyses into the Western Andean Front by means of a topological approach (Aconcagua Basin, Central Chile). Hydrogeol. J. 2020, 28, 2429–2438. [Google Scholar] [CrossRef]
- Qiu, P.; Li, P.T.; Hu, J.; Liu, Y. Modeling seepage flow and spatial variability of soil thermal conductivity during artificial ground freezing for tunnel excavation. Appl. Sci. 2021, 11, 6275. [Google Scholar] [CrossRef]
- Kruszewski, M.; Hofmann, H.; Alvarez, F.G.; Bianco, C.; Haro, A.J.; Garduño, V.H.; Liotta, D.; Trumpy, E.; Brogi, A.; Wheeler, W.; et al. Integrated stress field estimation and implications for enhanced geothermal system development in Acoculco, Mexico. Geothermics 2021, 89, 101931. [Google Scholar] [CrossRef]
- Chen, Z.; Qian, J.Z.; Zhan, H.B.; Zhou, Z.F.; Wang, J.G.; Tan, Y. Effect of roughness on water flow through a synthetic single rough fracture. Environ. Earth Sci. 2017, 76, 186. [Google Scholar] [CrossRef]
- Farmani, Z.; Azin, R.; Fatehi, R.; Escrochic, M. Analysis of pre-Darcy flow for different liquids and gases. J. Petrol. Sci. Eng. 2018, 168, 17–31. [Google Scholar] [CrossRef]
- Tan, J.; Rong, G.; He, R.; Yang, J.; Peng, J. Numerical investigation of heat transfer effect on flow behavior in a single fracture. Arab. J. Geosci. 2020, 13, 368–374. [Google Scholar] [CrossRef]
- Snow, D.T. Closure on rock fracture spacing, openings and porosities. J. Soil Mech. Found. Div. 1969, 94, 73–91. [Google Scholar] [CrossRef]
- Wang, L.; Cardenas, M.B.; Slottke, D.T.; Ketcham, R.A.; Sharp, J.M. Modification of the Local Cubic Law of fracture flow for weak inertia, tortuosity, and roughness. Water Resour. Res. 2015, 51, 2064–2080. [Google Scholar] [CrossRef]
- Zhang, Q.; Luo, S.H.; Ma, H.C.; Wang, X.; Qian, J.Z. Simulation on the water flow affected by the shape and density of roughness elements in a single rough fracture. J. Hydrol. 2019, 573, 456–468. [Google Scholar] [CrossRef]
- Xu, G.X.; Zhang, Y.X.; Ha, Q.L. Super-cubic and sub-cubic law of rough fracture seepage and its experiments study. Chin. J. Hydraul. Eng. 2003, 03, 74–79. [Google Scholar] [CrossRef]
- Nazridoust, K.; Ahmadi, G.; Smithb, D.H. A new friction factor correlation for laminar, single-phase flows through rock fractures. J. Hydrol. 2006, 329, 315–328. [Google Scholar] [CrossRef]
- Ghysels, G.; Mutua, S.; Veliz, G.B.; Huysmans, M. A modified approach for modelling river-aquifer interaction of gaining rivers in MODFLOW, including riverbed heterogeneity and river bank seepage. Hydrogeol. J. 2019, 27, 1851–1863. [Google Scholar] [CrossRef]
- Wang, X.; Sun, Y.; Xu, Z.; Zheng, J.; Zhang, C. Feasibility prediction analysis of groundwater reservoir construction based on gms and monte carlo analyses: A case study from the Dadougou Coal Mine, Shanxi Province, China. Arab. J. Geosci. 2019, 13, 24–33. [Google Scholar] [CrossRef]
- Persi, E.; Petaccia, G.; Sibilla, S.; Brufau, P.; Palacin, J.I.C. Experimental dataset and numerical simulation of floating bodies transport in open-channel flow. J. Hydroinform. 2020, 22, 1161–1181. [Google Scholar] [CrossRef]
- Samma, H.; Khosrojerdi, A.; Rostam-Abadi, M.; Mehraein, M.; Cataño-Lopera, Y. Numerical simulation of scour and flow field over movable bed induced by a submerged wall jet. J. Hydroinform. 2020, 22, 385–401. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.S.; Barma, S.D.; Amai, M. Simulation of coastal aquifer using mSim toolbox and COMSOL multiphysics. J. Earth Syst. Sc. 2020, 129, 4105–4131. [Google Scholar] [CrossRef]
- Liu, F.; Wang, G.L.; Zhang, W.; Yue, C.; Tao, L.B. Using TOUGH2 numerical simulation to analyse the geothermal formation in Guide basin, China. J. Groundw. Sci. Eng. 2020, 8, 328–337. [Google Scholar] [CrossRef]
- Lomize, G.M. Flow in Fractured Rocks; Gesenergoizdat: Moscow, Russia, 1951. [Google Scholar]
- Louis, C. A study of groundwater flow in jointed rock and its influence on the stability of rock masses. In Imperial College Rock Mechanics Report; Imperial College London: London, UK, 1969; pp. 91–98. [Google Scholar]
- Amadei, B.; Illangasekare, T. A mathematical model for flow and solute transport in non-homogeneous rock fracture. Int. J. Rock Mech. Min. Sci. Geomech. Abst. 1994, 31, 719–731. [Google Scholar] [CrossRef]
- Su, B.Y.; Zhan, M.L.; Zhao, J. Study on fracture seepage in the imitative nature rock. Chin. J. Geotech. Eng. 1995, 17, 19–24. [Google Scholar]
- Qian, J.Z.; Chen, Z.; Zhan, H.B.; Guan, H.C. Experimental study of roughness and Reynolds number on fluid flow in rough-walled single fractures: A check of local cubic law. Hydrol. Processes 2011, 25, 614–622. [Google Scholar] [CrossRef]
Parameter Type | Set-Up ** | Option or Remarks |
---|---|---|
solver precision | single-precision two-dimensional solver (2d) | two-dimensional single precision (2d), two-dimensional double precision (2ddp), three-dimensional single precision (3d), three-dimensional double precision (3ddp) |
sile-read-case | sodel import | |
grid-check | Check the information about the Fluent window | Make sure that there are no negative values in the grid volume or related warnings |
grid-scale | Select “mm” units | |
solver type | Segregated Solver | segregated solver, coupled solver-implicit, coupled solver-explicit |
time option | Steady | |
space option | 2D | Two-dimensional |
speed constituting option | Absolute velocity | |
gradient acquisition option | Cell-based | Calculation of absolute velocity of two-dimensional steady flow based on cell |
define-model- viscous | Realizablek-εmodel | Select enhanced wall treatment in the near-wall treatment column |
define-material | water-liquid | temperature 20 °C, density 998.2 kg/m3, dynamic viscosity coefficient 1.003 × 10−3 pa·s, other parameters are default values |
define-boundary condition | in-velocity magnitude out symmetry and wall | Enter values of velocity Enter 0 Default settings |
solve-control- solution | discretization options: momentum, turbulent kinetic energy k, dissipation rate ε | Select second order upwind all |
A * | Triangular | Rectangular | Sinusoidal | ||||||
---|---|---|---|---|---|---|---|---|---|
Kc | m | Kc | m | Kc | m | ||||
6 | 2.33 | 4.64 | 0.714 | 1.73 | 6.15 | 0.892 | 1.82 | 5.66 | 0.787 |
3.21 | 8.68 | 0.652 | 2.48 | 152.76 | 0.779 | 2.68 | 100.35 | 0.691 | |
4.09 | 139.63 | 0.627 | 3.22 | 214.68 | 0.690 | 3.53 | 165.89 | 0.657 | |
4.96 | 185.24 | 0.612 | 3.97 | 255.05 | 0.626 | 4.39 | 206.83 | 0.624 | |
5.84 | 239.21 | 0.598 | 4.72 | 305.13 | 0.586 | 5.24 | 270.23 | 0.617 | |
5 | 2.24 | 4.70 | 0.726 | 1.57 | 6.20 | 0.910 | 1.65 | 5.48 | 0.795 |
3.10 | 8.88 | 0.661 | 2.29 | 160.04 | 0.799 | 2.48 | 107.87 | 0.709 | |
3.97 | 138.72 | 0.633 | 3.00 | 240.27 | 0.723 | 3.32 | 163.41 | 0.660 | |
4.83 | 182.05 | 0.607 | 3.71 | 285.63 | 0.657 | 4.15 | 211.22 | 0.634 | |
5.69 | 234.72 | 0.593 | 4.43 | 402.73 | 0.641 | 4.98 | 277.11 | 0.616 | |
4 | 2.06 | 4.51 | 0.739 | 1.33 | 6.40 | 0.934 | 1.38 | 5.22 | 0.815 |
2.89 | 8.86 | 0.674 | 2.00 | 219.19 | 0.848 | 2.18 | 9.60 | 0.708 | |
3.72 | 133.68 | 0.637 | 2.67 | 339.72 | 0.759 | 2.98 | 150.47 | 0.670 | |
4.55 | 179.24 | 0.613 | 3.33 | 423.07 | 0.691 | 3.78 | 201.23 | 0.639 | |
5.37 | 234.95 | 0.600 | 4.00 | 528.74 | 0.658 | 4.58 | 260.81 | 0.623 |
A * | Triangular | Rectangular | Sinusoidal | |||
---|---|---|---|---|---|---|
Fitting Equation | R2 ** | Fitting Equation | R2 ** | Fitting Equation | R2 ** | |
6 | 0.950 | 0.919 | 0.919 | |||
5 | 0.963 | 0.936 | 0.843 | |||
4 | 0.954 | 0.931 | 0.940 |
Roughness Elements Shape | Density A | Average Fracture Aperture (mm) | Linear Regression Equation | Correlation Coefficient | Number of Sampling Points |
---|---|---|---|---|---|
triangular | 6 | 2.33 | K = 8.95 L − 0.207 | 0.417 | 10 |
5 | 2.24 | K = 11.14 L − 0.249 | 0.577 | 10 | |
4 | 2.06 | K = 13.02 L − 0.319 | 0.404 | 10 | |
rectangular | 6 | 1.73 | K = 7.77 L − 0.155 | 0.542 | 10 |
5 | 1.57 | K = 14.94 L − 0.337 | 0.562 | 10 | |
4 | 1.33 | K = 22.05 L − 0.521 | 0.458 | 10 | |
sinusoidal | 6 | 1.82 | K = 9.67 L − 0.204 | 0.623 | 9 |
5 | 1.65 | K = 6.86 L − 0.137 | 0.790 | 9 | |
4 | 1.38 | K = 5.99 L − 0.126 | 0.708 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Zhang, Q.; Zhao, L.; Jin, Y.; Qian, J. Seepage Characteristics Study of Single Rough Fracture Based on Numerical Simulation. Appl. Sci. 2022, 12, 7328. https://doi.org/10.3390/app12147328
Wang S, Zhang Q, Zhao L, Jin Y, Qian J. Seepage Characteristics Study of Single Rough Fracture Based on Numerical Simulation. Applied Sciences. 2022; 12(14):7328. https://doi.org/10.3390/app12147328
Chicago/Turabian StyleWang, Shidong, Qing Zhang, Li Zhao, Yi Jin, and Jiazhong Qian. 2022. "Seepage Characteristics Study of Single Rough Fracture Based on Numerical Simulation" Applied Sciences 12, no. 14: 7328. https://doi.org/10.3390/app12147328
APA StyleWang, S., Zhang, Q., Zhao, L., Jin, Y., & Qian, J. (2022). Seepage Characteristics Study of Single Rough Fracture Based on Numerical Simulation. Applied Sciences, 12(14), 7328. https://doi.org/10.3390/app12147328