In Vitro and In Silico Studies to Assess Edible Flowers’ Antioxidant Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standards and Reagents
2.2. Sample Collection and Characterization
2.3. Extraction of Phenolic Compounds
2.4. Spectrophotometric Studies
2.4.1. Total Phenolic Content (TPC)
2.4.2. Scavenging Activity on 2,2′-Azino-Bis-(3-Ethylbenzothiazoline-6-Sulfonic Acid) Radical (ABTS●+)
2.4.3. Ferric Reducing/Antioxidant Power Assay (FRAP)
2.5. Fourier-Transform Infrared Spectroscopy with Attenuated Total Reflectance (ATR-FTIR)
2.6. Statistical Analysis
2.7. Molecular Docking Studies
3. Results and Discussion
3.1. Spectrophotometric Profiles of Flowers
3.2. Interpretation of FTIR Spectra
3.3. Molecular Docking Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fernandes, L.; Casal, S.; Pereira, J.A.; Saraiva, J.A.; Ramalhosa, E. Edible flowers: A review of the nutritional, antioxidant, antimicrobial properties and effects on human health. J. Food Compos. Anal. 2017, 60, 38–50. [Google Scholar] [CrossRef]
- Rivas-García, L.; Navarro-Hortal, M.D.; Romero-Márquez, J.M.; Forbes-Hernández, T.Y.; Varela-López, A.; Llopis, J.; Sánchez-González, C.; Quiles, J.L. Edible flowers as a health promoter: An evidence-based review. Trends Food Sci. Technol. 2021, 117, 46–59. [Google Scholar] [CrossRef]
- de Franzen, F.L.; Lidório, H.F.; de Oliveira, M.S.R. Edible flower considerations as nbsp ingredients in food medicine and cosmetics. J. Anal. Pharm. Res. 2018, 7, 271–273. [Google Scholar] [CrossRef] [Green Version]
- Pires, T.C.S.P.; Barros, L.; Santos-Buelga, C.; Ferreira, I.C.F.R. Edible flowers: Emerging components in the diet. Trends Food Sci. Technol. 2019, 93, 244–258. [Google Scholar] [CrossRef]
- de Pires, E.O.; Di Gioia, F.; Rouphael, Y.; Ferreira, I.C.F.R.; Caleja, C.; Barros, L.; Petropoulos, S.A. The Compositional Aspects of Edible Flowers as an Emerging Horticultural Product. Molecules 2021, 26, 6940. [Google Scholar] [CrossRef]
- Benvenuti, S.; Mazzoncini, M. The Biodiversity of Edible Flowers: Discovering New Tastes and New Health Benefits. Front. Plant Sci. 2020, 11, 569499. [Google Scholar] [CrossRef]
- Purohit, S.R.; Rana, S.S.; Idrishi, R.; Sharma, V.; Ghosh, P. A review on nutritional, bioactive, toxicological properties and preservation of edible flowers. Future Foods 2021, 4, 100078. [Google Scholar] [CrossRef]
- Gonçalves, F.; Gonçalves, J.C.; Ferrão, A.C.; Correia, P.; Guiné, R.P.F. Evaluation of phenolic compounds and antioxidant activity in some edible flowers. Open Agric. 2020, 5, 857–870. [Google Scholar] [CrossRef]
- Takahashi, J.A.; Rezende, F.A.G.G.; Moura, M.A.F.; Dominguete, L.C.B.; Sande, D. Edible flowers: Bioactive profile and its potential to be used in food development. Food Res. Int. 2020, 129, 108868. [Google Scholar] [CrossRef]
- Mak, Y.W.; Chuah, L.; Ahmad, R.; Bhat, R. Antioxidant and antibacterial activities of hibiscus (Hibiscus rosa-sinensis L.) and Cassia (Senna bicapsularis L.) flower extracts. J. King Saud Univ. 2013, 25, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Kong, D.; Wu, H. Comprehensive chemical analysis of the flower buds of five Lonicera species by ATR-FTIR, HPLC-DAD, and chemometric methods. Revista Brasileira de Farmacognosia 2018, 28, 533–541. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, M.; Bhandari, B.; Wang, B. Effects of infrared freeze drying on volatile profile, FTIR molecular structure profile and nutritional properties of edible rose flower (Rosa rugosa flower). J. Sci. Food Agric. 2020, 100, 4791–4800. [Google Scholar] [CrossRef]
- Pavelková, P.; Krmela, A.; Schulzova, V. Determination of carotenoids in flowers and food supplements by HPLC-DAD. Acta Chim. Slovaca 2020, 13, 6–12. [Google Scholar] [CrossRef]
- Lopes, C.L.; Pereira, E.; Soković, M.; Carvalho, A.M.; Barata, A.M.; Lopes, V.; Rocha, F.; Calhelha, R.C.; Barros, L.; Ferreira, I.C.F.R. Phenolic Composition and Bioactivity of Lavandula pedunculata (Mill.) Cav. Samples from Different Geographical Origin. Molecules 2018, 23, 1037. [Google Scholar] [CrossRef] [Green Version]
- Pires, T.C.S.P.; Dias, M.I.; Barros, L.; Calhelha, R.C.; Alves, M.J.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Edible flowers as sources of phenolic compounds with bioactive potential. Food Res. Int. 2018, 105, 580–588. [Google Scholar] [CrossRef] [Green Version]
- Navarro-González, I.; González-Barrio, R.; García-Valverde, V.; Bautista-Ortín, A.B.; Periago, M.J. Nutritional Composition and Antioxidant Capacity in Edible Flowers: Characterisation of Phenolic Compounds by HPLC-DAD-ESI/MSn. Int. J. Mol. Sci. 2014, 16, 805–822. [Google Scholar] [CrossRef] [Green Version]
- Mar, J.M.; da Silva, L.S.; Moreira, W.P.; Biondo, M.M.; Pontes, F.L.D.; Campos, F.R.; Kinupp, V.F.; Campelo, P.H.; Sanches, E.A.; de Bezerra, J.A. Edible flowers from Theobroma speciosum: Aqueous extract rich in antioxidant compounds. Food Chem. 2021, 356, 129723. [Google Scholar] [CrossRef]
- Wongsa, P.; Rattanapanone, N. 1H-NMR analysis, antioxidant activity, and α-amylase and α-glucosidase inhibitory potential of ten common Thai edible flowers. J. Sci. Food Agric. 2021, 101, 4380–4389. [Google Scholar] [CrossRef]
- Marchioni, I.; Najar, B.; Ruffoni, B.; Copetta, A.; Pistelli, L.; Pistelli, L. Bioactive Compounds and Aroma Profile of Some Lamiaceae Edible Flowers. Plants 2020, 9, 691. [Google Scholar] [CrossRef]
- Ruth, C.C.; Thoufikanashrin, A. Evaluation of Bioactive Compounds in the Edible Hibiscus Rosa Sinensis L. Flower Petals by Gc Ms Analysis. World J. Pharm. Res. 2018, 7, 403–409. [Google Scholar]
- Bandari, S.K.; Kammari, B.R.; Madda, J.; Kommu, N.; Lakkadi, A.; Vuppala, S.; Tigulla, P. Synthesis of new chromeno-carbamodithioate derivatives and preliminary evaluation of their antioxidant activity and molecular docking studies. Bioorg. Med. Chem. Lett. 2017, 27, 1256–1260. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Wang, W.; Li, J.; Lei, Y.; Zhao, Y.; Yang, W.; Zhao, C.; Lin, B.; Song, S.; Wang, S. A novel structural class of coumarin-chalcone fibrates as PPARα/γ agonists with potent antioxidant activities: Design, synthesis, biological evaluation and molecular docking studies. Eur. J. Med. Chem. 2017, 138, 212–220. [Google Scholar] [CrossRef] [PubMed]
- da Costa, J.S.; da Ramos, R.S.; da Costa, K.S.L.; do Brasil, D.S.B.; de Paula da Silva, C.H.T.; Ferreira, E.F.B.; dos Borges, R.S.; Campos, J.M.; da Macêdo, W.J.C.; dos Santos, C.B.R. An In Silico Study of the Antioxidant Ability for Two Caffeine Analogs Using Molecular Docking and Quantum Chemical Methods. Molecules 2018, 23, 2801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farouk, A.; Mohsen, M.; Ali, H.; Shaaban, H.; Albaridi, N. Antioxidant Activity and Molecular Docking Study of Volatile Constituents from Different Aromatic Lamiaceous Plants Cultivated in Madinah Monawara, Saudi Arabia. Molecules 2021, 26, 4145. [Google Scholar] [CrossRef]
- Shehab, W.S.; Aziz, M.A.; Elhoseni, N.K.R.; Assy, M.G.; Abdellattif, M.H.; Hamed, E.O. Design, Synthesis, Molecular Docking, and Evaluation Antioxidant and Antimicrobial Activities for Novel 3-phenylimidazolidin-4-one and 2-aminothiazol-4-one Derivatives. Molecules 2022, 27, 767. [Google Scholar] [CrossRef]
- Dharmaraja, A.T. Role of Reactive Oxygen Species (ROS) in Therapeutics and Drug Resistance in Cancer and Bacteria. J. Med. Chem. 2017, 60, 3221–3240. [Google Scholar] [CrossRef]
- Andreou, V.; Strati, I.F.; Fotakis, C.; Liouni, M.; Zoumpoulakis, P.; Sinanoglou, V.J. Herbal distillates: A new era of grape marc distillates with enriched antioxidant profile. Food Chem. 2018, 253, 171–178. [Google Scholar] [CrossRef]
- Lantzouraki, D.Z.; Sinanoglou, V.J.; Zoumpoulakis, P.G.; Glamočlija, J.; Ćirić, A.; Soković, M.; Heropoulos, G.; Proestos, C. Antiradical–antimicrobial activity and phenolic profile of pomegranate (Punica granatum L.) juices from different cultivars: A comparative study. RSC Adv. 2014, 5, 2602–2614. [Google Scholar] [CrossRef]
- Lantzouraki, D.Z.; Sinanoglou, V.J.; Zoumpoulakis, P.; Proestos, C. Comparison of the Antioxidant and Antiradical Activity of Pomegranate (Punica granatum L.) by Ultrasound-Assisted and Classical Extraction. Anal. Lett. 2016, 49, 969–978. [Google Scholar] [CrossRef]
- Schrödinger Release 2020-3, Protein Preparation Wizard; Schrödinger, LLC: New York, NY, USA, 2021.
- De Morais, J.S.; Sant’Ana, A.S.; Dantas, A.M.; Silva, B.S.; Lima, M.S.; Borges, G.C.; Magnani, M. Antioxidant activity and bioaccessibility of phenolic compounds in white, red, blue, purple, yellow and orange edible flowers through a simulated intestinal barrier. Food Res. Int. 2020, 131, 109046. [Google Scholar] [CrossRef]
- Youssef, H.; Ali, S.; Sanad, M.; Dawood, D. Chemical Investigation of Flavonoid, Phenolic acids Composition and Antioxidant activity of Tagetes erecta Flowers. Egypt. J. Chem. 2020, 63, 2605–2615. [Google Scholar] [CrossRef]
- Schrödinger Release 2020-3, Maestro; Schrödinger, LLC: New York, NY, USA, 2020.
- Schrödinger Release 2020-3, Glide; Schrödinger, LLC: New York, NY, USA, 2020.
- Lu, B.; Li, M.; Yin, R. Phytochemical Content, Health Benefits, and Toxicology of Common Edible Flowers: A Review (2000–2015). Crit. Rev. Food Sci. Nutr. 2016, 56 (Suppl. S1), S130–S148. [Google Scholar] [CrossRef]
- Iwashina, T. Contribution to flower colors of flavonoids including anthocyanins: A review. Nat. Prod. Commun. 2015, 10, 529–544. [Google Scholar] [CrossRef] [Green Version]
- Gomare, K.; Mishra, D. FTIR spectroscopic analysis of phytochemical extracts from Hibiscus rosa-sinensis L. used for hair disorder. Int. J. Recent Trends Sci. Technol. 2018, 70–75. [Google Scholar]
- Brangule, A.; Šukele, R.; Bandere, D. Herbal Medicine Characterization Perspectives Using Advanced FTIR Sample Techniques–Diffuse Reflectance (DRIFT) and Photoacoustic Spectroscopy (PAS). Front. Plant Sci. 2020, 11, 356. [Google Scholar] [CrossRef]
- Oliveira, R.N.; Mancini, M.C.; de Oliveira, F.C.S.; Passos, T.M.; Quilty, B.; da Thiré, R.M.S.M.; McGuinness, G.B. FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Matéria 2016, 21, 767–779. [Google Scholar] [CrossRef] [Green Version]
- Pop, R.; Buzoianu, A.; Rati, I.V.; Socaciu, C. Untargeted Metabolomics for Sea Buckthorn (Hippophae rhamnoides ssp. carpatica) Berries and Leaves: Fourier Transform Infrared Spectroscopy as a Rapid Approach for Evaluation and Discrimination. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 2014, 42, 545–550. [Google Scholar] [CrossRef] [Green Version]
- Kozłowicz, K.; Różyło, R.; Gładyszewska, B.; Matwijczuk, A.; Gładyszewski, G.; Chocyk, D.; Samborska, K.; Piekut, J.; Smolewska, M. Identification of sugars and phenolic compounds in honey powders with the use of GC-MS, FTIR spectroscopy, and X-ray diffraction. Sci. Rep. 2020, 10, 16269. [Google Scholar] [CrossRef]
- Quijano-Ortega, N.; Fuenmayor, C.A.; Zuluaga-Dominguez, C.; Diaz-Moreno, C.; Ortiz-Grisales, S.; García-Mahecha, M.; Grassi, S. FTIR-ATR Spectroscopy Combined with Multivariate Regression Modeling as a Preliminary Approach for Carotenoids Determination in Cucurbita spp. Appl. Sci. 2020, 10, 3722. [Google Scholar] [CrossRef]
- Konteles, S.J.; Strati, I.F.; Giannakourou, M.; Batrinou, A.; Papadakis, S.; Ourailoglou, D.; Zoumpoulakis, P.; Sinanoglou, V.J. Instant Herbal Powder: Functionality Assessment through Chemical, Microbiological and Shelf Life Kinetics. Anal. Lett. 2022, 55, 1505–1516. [Google Scholar] [CrossRef]
- Prabawati, N.B.; Oktavirina, V.; Palma, M.; Setyaningsih, W. Edible Flowers: Antioxidant Compounds and Their Functional Properties. Horticulturae 2021, 7, 66. [Google Scholar] [CrossRef]
- Lountos, G.T.; Jiang, R.; Wellborn, W.B.; Thaler, T.L.; Bommarius, A.S.; Orville, A.M. The crystal structure of NAD(P)H oxidase from Lactobacillus sanfranciscensis: Insights into the conversion of O2 into two water molecules by the flavoenzyme. Biochemistry 2006, 45, 9648–9659. [Google Scholar] [CrossRef]
Common Name and Flower Color | Scientific Name | Family Name |
---|---|---|
Purple Mexican petunia | Ruellia simpex C. Wright | Acanthaceae |
Yellow black-eyed Susan vine | Thunbergia alata Bojer ex Sims | |
Pink periwinkle | Catharanthus roseus L. G. Don | Apocynaceae |
Orange Cape honeysuckle | Tecomaria capensis (Thunb.) Spach | Begoniaceae |
Pink carnation | Dianthus caryophyllus L. | Caryophyllaceae |
Orange marigold | Tagetes erecta L. | Compositae |
Purple Indian chrysanthemum | Chrysanthemum indicum L. | |
Dark red Indian chrysanthemum | Chrysanthemum indicum L. | |
Pink azalea | Rhododendron simsii Planch. | Ericaceae |
Pink lily | Lilium candidum L. | Liliaceae |
Red hibiscus | Hibiscus rosa-sinensis L. | Malvaceae |
White hibiscus | Hibiscus rosa-sinensis L. | |
Red wax mallow | Malvaviscus arboreus Cav. | |
White jasmine | Jasminum Officinale L. | Oleaceae |
Purple common snapdragon | Antirrhinum majus L. | Plantaginaceae |
Blue plumbago | Plumbago auriculata Lam. | Plumbaginaceae |
Red spring sowbread | Cyclamen repandum Sm. | Primulaceae |
White spring sowbread | Cyclamen hederifolium Aiton | |
Fuchsia spring sowbread | Cyclamen hederifolium Aiton | |
Red China rose | Rosa chinensis Jacq. | Rosaceae |
Yellow lantana | Lantana camara L. | Verbenaceae |
White lantana | Lantana camara L. | |
Pink lantana | Lantana camara L. | |
Yellow heartsease | Viola tricolor L. | Violaceae |
Purple heartsease | Viola tricolor L. |
No. | Common Name and Flower Color | Moisture (%) | TPC (mg GAE/g Fresh Flowers) | ABTS (mg Trolox (TE)/g Fresh Flowers) | FRAP (mg Fe(II)/g Fresh Flowers) |
---|---|---|---|---|---|
1 | Red China rose | 84.32 | 18.55 ± 0.63 a | 43.88 ± 0.97 a | 130.96 ± 2.80 a |
2 | Orange Mexican marigold | 83.26 | 7.58 ± 0.58 b | 17.67 ± 1.20 b | 124.27 ± 1.41 b |
3 | Red spring sowbread | 89.31 | 7.35 ± 0.61 b | 24.65 ± 0.38 c | 25.08 ± 0.83 c |
4 | Yellow heartsease | 87.23 | 7.15 ± 0.48 b | 21.72 ± 0.21 d | 24.39 ± 0.58 c |
5 | Purple heartsease | 87.31 | 6.91 ± 0.59 bc | 13.84 ± 1.01 e | 24.78 ± 0.47 c |
6 | White spring sowbread | 88.24 | 6.39 ± 0.11 c | 23.77 ± 0.49 f | 17.22 ± 0.39 d |
7 | Blue plumbago | 90.75 | 6.25 ± 0.18 c | 10.68 ± 0.61 g | 26.94 ± 0.35 e |
8 | Fuchsia spring sowbread | 89.17 | 5.46 ± 0.13 d | 18.81 ± 0.78 h | 15.51 ± 0.85 f |
9 | White jasmine | 89.42 | 4.59 ± 0.17 e | 6.38 ± 0.13 j | 7.58 ± 0.37 g |
10 | Purple Mexican petunia | 87.22 | 4.30 ± 0.27 e | 3.89 ± 0.13 k | 11.06 ± 0.32 h |
11 | Red hibiscus | 83.08 | 4.30 ± 0.32 e | 10.91 ± 0.42 g | 26.44 ± 0.37 e |
12 | White hibiscus | 82.87 | 4.20 ± 0.30 e | 7.32 ± 0.26 l | 26.56 ± 0.13 e |
13 | Pink periwinkle | 85.34 | 3.51 ± 0.25 f | 3.18 ± 0.33 m | 14.44 ± 1.51 f |
14 | Yellow lantana | 86.93 | 2.59 ± 0.09 g | 3.52 ± 0.14 m | 4.83 ± 0.42 jo |
15 | Orange cape honeysuckle | 88.90 | 2.49 ± 0.08 g | 3.34 ± 0.17 m | 4.08 ± 0.36 j |
16 | Red wax mallow | 91.23 | 2.25 ± 0.10 h | 5.18 ± 0.20 n | 11.60 ± 0.32 h |
17 | Purple Indian chrysanthemum | 82.16 | 2.13 ± 0.12 hj | 4.45 ± 0.82 n | 12.73 ± 0.44 k |
18 | Yellow black-eyed Susan vine | 90.71 | 2.02 ± 0.28 hj | 2.94 ± 0.38 mn | 3.34 ± 0.25 l |
19 | Dark red Indian chrysanthemum | 82.75 | 1.94 ± 0.13 jk | 3.40 ± 0.32 m | 9.58 ± 0.46 m |
20 | Pink azalea | 92.18 | 1.76 ± 0.11 kl | 3.99 ± 0.40k m | 12.95 ± 0.25 k |
21 | White lantana | 86.23 | 1.68 ± 0.07 l | 2.42 ± 0.48 n | 3.38 ± 0.36 l |
22 | Pink lantana | 87.16 | 1.40 ± 0.08 m | 2.56 ± 0.23 n | 3.38 ± 0.21 l |
23 | Pink carnation | 83.10 | 1.30 ± 0.06 m | 2.42 ± 0.35 n | 6.30 ± 0.26 n |
24 | Purple common snapdragon | 85.25 | 0.97 ± 0.05 n | 2.48 ± 0.56 n | 3.06 ± 0.35 l |
25 | Pink lily | 88.48 | 0.92 ± 0.05 n | 3.32 ± 0.49 m | 5.18 ± 0.31 o |
Peaks (cm−1) | Flower Samples 1 | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | |
3300–3500 | √ 2 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ |
3200–3300 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ |
2920–2940 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ |
1700–1740 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||||||||||||
1640–1680 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | |||||||||||||
1490–1610 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||
1430–1470 | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||||||||||||||||
1390–1410 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | |||||
1350–1380 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | |||||||||||||
1330–1350 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | |||||||||||
1280–1310 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||||||||||||||
1220–1270 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | |||||||
1180–1210 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||||||||
1140–1160 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||||||||||||
1020–1110 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ |
960–970 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||
840–890 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ |
810–840 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ |
760–810 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | |
680–730 | √ | √ | √ | √ | √ | √ |
Compounds | NADPH Oxidase (PDB: 2CDU) | Cytochrome P450 (CP450) (PDB: 1OG5) | Lipoxygenase (LOX) (PDB: 1N8Q) | Myeloperoxidase (MP) (PDB: 1DNU) | Xanthine Oxidase (XO) (PDB: 3NRZ) |
---|---|---|---|---|---|
Docking Score (kcal·mol−1) | |||||
Dextromethorphan (DEX) | −3.82 | NT 1 | NT | NT | NT |
5-Fluorouracil (FLU) | NT | −6.13 | NT | NT | NT |
Zileuton (ZIL) | NT | NT | −2.35 | NT | NT |
Melatonin (MEL) | NT | NT | NT | −3.53 | NT |
Febuxostat (FEB) | NT | NT | NT | NT | −6.70 |
Caftaric acid | −6.97 | −5.41 | NB 2 | −4.30 | −6.39 |
Caffeic acid | −5.76 | −6.84 | −5.21 | −4.69 | −5.55 |
Catechin | −6.75 | −5.78 | NB | −5.19 | −7.83 |
Chlorogenic acid | −5.97 | −5.88 | NB | −5.14 | −5.40 |
Epicatechin | −6.67 | −8.73 | NB | −5.23 | −4.09 |
Epicatechin gallate | −5.24 | −7.76 | NB | −4.03 | −4.00 |
Epigallocatechin gallate | −5.24 | −7.76 | NB | −5.22 | NB |
Gallic acid | −5.27 | −5.87 | −6.36 | −4.84 | −7.68 |
Hesperetin | −6.11 | −6.08 | NB | −4.41 | −6.76 |
Hesperidin | −4.88 | −6.83 | NB | −5.32 | NB |
Kaempferol 3-glucoside | −6.01 | −6.60 | NB | −4.56 | NB |
Myricetin | −6.56 | −6.18 | NB | −4.84 | −7.31 |
Naringenin | −6.43 | −6.99 | NB | −5.10 | −5.44 |
Naringin | −4.54 | −8.15 | NB | −4.29 | NB |
Procyanidin B1 | −4.01 | −7.72 | NB | −4.13 | NB |
Procyanidin B2 | −4.84 | −7.90 | NB | −4.41 | NB |
Pyrogallol | −4.63 | −5.75 | −6.45 | −4.61 | −6.37 |
Quercitin 3-Glucoside | −6.57 | −5.84 | NB | −5.01 | NB |
Resveratrol | −6.84 | −5.62 | NB | −4.86 | −8.23 |
Rutin | −4.91 | −8.13 | NB | −5.18 | NB |
Syringic acid | −5.96 | −5.39 | −5.49 | −4.70 | −5.94 |
Vanillic acid | −5.77 | −5.78 | −6.08 | −4.67 | −6.54 |
Compounds | NADPH Oxidase (PDB: 2CDU) | Cytochrome P450 (CP450) (PDB: 1OG5) | Lipoxygenase (LOX) (PDB: 1N8Q) | Myeloperoxidase (MP) (PDB: 1DNU) | Xanthine Oxidase (XO) (PDB: 3NRZ) |
---|---|---|---|---|---|
Interactions | |||||
Dextromethorphan (DEX) and adenosine-5′-diphosphate | HB 1: Ile160, Gly161, Ile178, Asp179, His181, Tyr188, Cys242 Pi–c: Lys187, Lys213 | ||||
5-Fluorouracil (FLU) and warfarin | HB: Gly98, Phe100, Ala103, Asn217 pi–c: Arg97, Phe476 | ||||
Zileuton (ZIL) and protocatechuic acid | pi–pi His518 | ||||
Melatonin (MEL) and N-acetyl-D-glucosamine | HB: Asn189, Asn192, Val199, Gln201 | ||||
Febuxostat (FEB) and hypoxanthine | HB: Glu802, Arg880, Thr1010 pi–pi: Phe914, Phe1009 | ||||
Caftaric acid | HB: Asp179 2, Leu185, Tyr186, Tyr188, Val214 | HB: Thr301, Ser365 | NO 1 | HB: Arg185, Asn189, Ser191, Val199, Gln201 | HB: Ser876, Arg880, Thr1010 pi–pi: Phe914, Phe1009 |
Caffeic acid | HB: Asp179, Val214 | HB: Ala103, Thr364, Ser365 pi–pi: Phe476 | HB: Ile857 pi–pi: Trp519 | HB: Asn186, Gln201, Phe214 | HB: Glu802, Arg880, Thr1010 pi–pi: Phe914, Phe1009 |
Catechin | HB: Asp179, Tyr188, Val214 pi–c: Lys187 | HB: Ser365 pi–pi: Phe476 | NO | HB: Asn186, Arg188, Asn189, Phe213 | HB: Glu802, Thr1010 pi–pi: Phe914, Phe1009 |
Chlorogenic acid | HB: Asp179, Gly180, Val214 | HB: Leu208, Asn217, Thr364, Ser365 pi–pi: Phe476 | NO | HB: Asn186, Asn189, Ser191, Gln201, Phe213 | HB: Lys771, Thr1010 pi–pi: Phe914, Phe1009 |
Epicatechin | HB: Asp179, Hie181, Val214 pi–c: Lys213 | HB: Leu208, Thr364, Ser365 pi–pi: Phe476 | NO | HB: Arg188, Val199, Phe213 | HB: Ser876 |
Epicatechin gallate | HB: His181, Val214 pi–c: Lys187, Lys213 | HB: Gly98, Gly296, Thr301, Thr364, Ser365 pi–pi: Phe476 | NO | HB: Arg185, Gln201, Phe213 | NO |
Epigallocatechin gallate | HB: His181, Val214 pi–c: Lys187, Lys213 | HB: Gly98, Gly296, Thr301, Thr364, Ser365 pi–pi: Phe476 | NO | HB: Asn186, Arg188, Asn189, Phe213 | NO |
Gallic acid | HB: Asp179, Tyr188, Cys242 | HB: Thr364, Ser365 pi–pi: Phe476 | HB: Gln514, Ile857 pi–pi: His518 | HB: Arg188, Met190, Val199 | HB: Glu802, Arg880, Thr1010 pi–pi: Phe914, Phe1009 |
Hesperetin | HB: Val214 pi–pi: His181 | HB: Ser365 pi–pi: Phe476 | NO | HB: Arg188, Val199, Gln201 | HB: Thr1010 pi–pi: Phe914, Phe1009 |
Hesperidin | HB: Ile243, Arg246 | HB: Leu208 pi–pi: Phe114 | NO | HB: Arg188, Met190, Ser191, Gln201, Gln204, Phe213 | NO |
Kaempferol 3-glucoside | HB: Lys213, Val214 pi–pi: His181 | HB: Gly98, Ser365 pi–c: Arg97 | NO | HB: Arg185, Asn186, Asn189, Val199, Gln201 | NO |
Myricetin | HB: Val214 pi–c: Lys213 | HB: Ser365 pi–c: Phe476 | NO | HB: Asn186, Ser191, Gln201, Phe213 | HB: Glu802, Thr1010 pi–pi: Phe914, Phe1009 |
Naringenin | HB: His181, Val214 | HB: Ser365 pi–pi: Phe476 | NO | HB: Asn186, Asn189, Phe213 | HB: Leu648 pi–pi: Phe1009 |
Naringin | HB: Lys187, Lys213, Arg246 | HB: Phe100, Thr301 pi–pi: heme, Phe214 | NO | HB: Asn186, Arg188, Met190, Phe214 | NO |
Procyanidin B1 | HB: Lys213, Val214 | HB: Ala106, Leu208, Ser365 pi–pi: Phe214 | NO | HB: Gln201, Gln204, Gly207 | NO |
Procyanidin B2 | HB: Asp179, Lys189, Tyr188, Lys213 | HB: Gly98, Ser365 pi–pi: Phe476 | NO | HB: Asn192, Gln201, Gly207, Asp539 | NO |
Pyrogallol | HB: Asp179, Lys187 | HB: Thr364, Ser365 pi–pi: Phe476 | HB: Gln514 pi–pi: His518, His523 | HB: Asn186, Met190 | HB: Glu802, Thr1010 pi–pi: Phe914, Phe1009 |
Quercitin 3-glucoside | HB: Asp179, Gly180, Lys213, Ile243, Arg246 | HB: Ala106, Leu208, Asn217, Phe476 pi–pi: Phe114 | NO | HB: Asn186, Arg188, Asn189, Met190, Ser191, Val199, Phe213 | NO |
Resveratrol | HB: His181, Lys187, Tyr188, Val214 pi–c: Lys187 | HB: Ser365 pi–pi: Phe476 | NO | HB: Asn200, Gln201, Gln204 | HB: Glu802, Thr1010 pi–pi: Phe914, Phe 1009 |
Rutin | HB: Lys213, Val214 | HB: Asn107, Leu208, Gln214 pi–c: Arg97 | NO | HB: Asn189, Gln201, Asn258, Asn540 | NO |
Syringic acid | HB: Val214 | HB: Leu208, Ser365 | HB: Ile857 pi–pi: His518 | HB: Arg188, Met190, Ser191, Val199 | HB: Asn768, Glu802 |
Vanillic acid | HB: Asp179, Val214 | HB: Thr364, Ser365 pi–pi: Phe476 | HB: Gln514, Ile857 pi–pi: His518 | HB: Arg188, Met190, Val199 | HB: Glu802, Arg880, Thr1010 pi–pi: Phe914, Phe1009 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kritsi, E.; Tsiaka, T.; Ioannou, A.-G.; Mantanika, V.; Strati, I.F.; Panderi, I.; Zoumpoulakis, P.; Sinanoglou, V.J. In Vitro and In Silico Studies to Assess Edible Flowers’ Antioxidant Activities. Appl. Sci. 2022, 12, 7331. https://doi.org/10.3390/app12147331
Kritsi E, Tsiaka T, Ioannou A-G, Mantanika V, Strati IF, Panderi I, Zoumpoulakis P, Sinanoglou VJ. In Vitro and In Silico Studies to Assess Edible Flowers’ Antioxidant Activities. Applied Sciences. 2022; 12(14):7331. https://doi.org/10.3390/app12147331
Chicago/Turabian StyleKritsi, Eftichia, Thalia Tsiaka, Alexandros-George Ioannou, Vassiliki Mantanika, Irini F. Strati, Irene Panderi, Panagiotis Zoumpoulakis, and Vassilia J. Sinanoglou. 2022. "In Vitro and In Silico Studies to Assess Edible Flowers’ Antioxidant Activities" Applied Sciences 12, no. 14: 7331. https://doi.org/10.3390/app12147331
APA StyleKritsi, E., Tsiaka, T., Ioannou, A. -G., Mantanika, V., Strati, I. F., Panderi, I., Zoumpoulakis, P., & Sinanoglou, V. J. (2022). In Vitro and In Silico Studies to Assess Edible Flowers’ Antioxidant Activities. Applied Sciences, 12(14), 7331. https://doi.org/10.3390/app12147331