Beneficial Effects of Pistacia terebinthus Resin on Wine Making
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Strain
2.2. Harvesting of Pistacia terebinthus Resin
2.3. Yeast Cells Immobilization on Pistacia terebinthus Resin
2.4. Repeated Fermentation Batches of Must (12.5 °Be) at Different Temperatures
2.5. Ethanol, Residual Sugar and Major Volatiles Analyses
2.6. Phenolic Content Determination
2.7. DPPH Free Radical Scavenging Activity
2.8. Head Space (HS) Solid Phase Microextraction (SPME) Gas Chromatography-Mass Spectrometry (GC-MS) Analysis
2.9. Preliminary Sensory Evaluation of the Produced Wines
2.10. Statistical Analysis
3. Results and Discussion
3.1. Selection of the Appropriate Quantity of Yeast/Resin
3.2. Repeated Fermentation Batches of Must by Immobilized and Free Yeast Cells
3.3. Major Volatile By-Products in Wines
3.4. Volatile by Products Detected by HS-SPME GS-MS in Wines
3.5. Polyphenolic Content of the Produced Wines and Their Antioxidant Activity
3.6. Preservation of the Wines Produced by Immobilized and Free Cells
3.7. Sensory Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, D.; Li, B.; Ma, Y.; Sun, X.; Lin, Y.; Meng, X. Polyphenols, Anthocyanins, and Flavonoids Contents and the Antioxidant Capacity of Various Cultivars of Highbush and Half-High Blueberries. J. Food Compos. Anal. 2017, 62, 84–93. [Google Scholar] [CrossRef]
- Gorzkiewicz, J.; Bartosz, G.; Sadowska-Bartosz, I. The Potential Effects of Phytoestrogens: The Role in Neuroprotection. Molecules 2021, 26, 2954. [Google Scholar] [CrossRef] [PubMed]
- Hadjimbei, E.; Botsaris, G.; Goulas, V.; Gekas, V. Health-Promoting Effects of Pistacia Resins: Recent Advances, Challenges, and Potential Applications in the Food Industry. Food Rev. Int. 2015, 31, 1–12. [Google Scholar] [CrossRef]
- Buriani, A.; Fortinguerra, S.; Sorrenti, V.; Dall’Acqua, S.; Innocenti, G.; Montopoli, M.; Gabbia, D.; Carrara, M. Human Adenocarcinoma Cell Line Sensitivity to Essential Oil Phytocomplexes from Pistacia Species: A Multivariate Approach. Molecules 2017, 22, 1336. [Google Scholar] [CrossRef]
- Rauf, A.; Patel, S.; Uddin, G.; Siddiqui, B.S.; Ahmad, B.; Muhammad, N.; Mabkhot, Y.N.; Hadda, T. Ben Phytochemical, Ethnomedicinal Uses and Pharmacological Profile of Genus Pistacia. Biomed. Pharmacother. 2017, 86, 393–404. [Google Scholar] [CrossRef]
- Bozorgi, M.; Memariani, Z.; Mobli, M.; Salehi Surmaghi, M.H.; Shams-Ardekani, M.R.; Rahimi, R. Five Pistacia Species (P. Vera, P. Atlantica, P. Terebinthus, P. Khinjuk, and P. Lentiscus): A Review of Their Traditional Uses, Phytochemistry, and Pharmacology. Sci. World J. 2013, 2013, 219815. [Google Scholar] [CrossRef]
- Gogus, F.; Ozel, M.Z.; Kocak, D.; Hamilton, J.F.; Lewis, A.C. Analysis of Roasted and Unroasted Pistacia Terebinthus Volatiles Using Direct Thermal Desorption-GCxGC-TOF/MS. Food Chem. 2011, 129, 1258–1264. [Google Scholar] [CrossRef]
- Schoina, V.; Terpou, A.; Angelika-Ioanna, G.; Koutinas, A.; Kanellaki, M.; Bosnea, L. Use of Pistacia Terebinthus Resin as Immobilization Support for Lactobacillus Casei Cells and Application in Selected Dairy Products. J. Food Sci. Technol. 2015, 52, 5700–5708. [Google Scholar] [CrossRef]
- Köten, M. Influence of Raw/Roasted Terebinth (Pistacia Terebinthus L.) on the Selected Quality Characteristics of Sponge Cakes. Int. J. Gastron. Food Sci. 2021, 24, 100342. [Google Scholar] [CrossRef]
- Mohagheghzadeh, A.; Faridi, P.; Ghasemi, Y. Analysis of Mount Atlas Mastic Smoke: A Potential Food Preservative. Fitoterapia 2010, 81, 577–580. [Google Scholar] [CrossRef] [PubMed]
- Andrikopoulos, N.K.; Kaliora, A.C.; Assimopoulou, A.N.; Papapeorgiou, V.P. Biological Activity of Some Naturally Occurring Resins, Gums and Pigments against in Vitro LDL Oxidation. Phyther. Res. 2003, 17, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Kallis, M.; Sideris, K.; Kopsahelis, N.; Bosnea, L.; Kourkoutas, Y.; Terpou, A.; Kanellaki, M. Pistacia Terebinthus Resin as Yeast Immobilization Support for Alcoholic Fermentation. Foods 2019, 8, 127. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.N.; Gialleli, A.I.; Masson, J.B.; Kandylis, P.; Bekatorou, A.; Koutinas, A.A.; Kanellaki, M. Lactic Acid Fermentation by Cells Immobilised on Various Porous Cellulosic Materials and Their Alginate/Poly-Lactic Acid Composites. Bioresour. Technol. 2014, 165, 332–335. [Google Scholar] [CrossRef]
- Bardi, E.P.; Koutinas, A.A. Immobilization of Yeast on Delignified Cellulosic Material for Room Temperature and Low-Temperature Wine Making. J. Agric. Food Chem. 1994, 42, 221–226. [Google Scholar] [CrossRef]
- Bardi, E.P.; Koutinas, A.A.; Soupioni, M.J.; Kanellaki, M.E. Immobilization of Yeast on Delignified Cellulosic Material for Low Temperature Brewing. J. Agric. Food Chem. 1996, 44, 463–467. [Google Scholar] [CrossRef]
- Argiriou, T.; Kaliafas, A.; Psarianos, K.; Kanellaki, M.; Voliotis, S.; Koutinas, A.A. Psychrotolerant Saccharomyces Cerevisiae Strains after an Adaptation Treatment for Low Temperature Wine Making. Process Biochem. 1996, 31, 639–643. [Google Scholar] [CrossRef]
- Kopsahelis, N.; Agouridis, N.; Bekatorou, A.; Kanellaki, M. Comparative Study of Spent Grains and Delignified Spent Grains as Yeast Supports for Alcohol Production from Molasses. Bioresour. Technol. 2007, 98, 1440–1447. [Google Scholar] [CrossRef] [PubMed]
- Schoina, V.; Terpou, A.; Bosnea, L.; Kanellaki, M.; Nigam, P.S. Entrapment of Lactobacillus Casei ATCC393 in the Viscus Matrix of Pistacia Terebinthus Resin for Functional Myzithra Cheese Manufacture. LWT - Food Sci. Technol. 2018, 89, 441–448. [Google Scholar] [CrossRef]
- Chen, Z.; Bertin, R.; Froldi, G. EC50 Estimation of Antioxidant Activity in DPPH* Assay Using Several Statistical Programs. Food Chem. 2013, 138, 414–420. [Google Scholar] [CrossRef]
- Liu, X.; Cui, C.; Zhao, M.; Wang, J.; Luo, W.; Yang, B.; Jiang, Y. Identification of Phenolics in the Fruit of Emblica (Phyllanthus Emblica L.) and Their Antioxidant Activities. Food Chem. 2008, 109, 909–915. [Google Scholar] [CrossRef]
- Tsakiris, A.; Kourkoutas, Y.; Dourtoglou, V.G.; Koutinas, A.A.; Psarianos, C.; Kanellaki, M. Wine Produced by Immobilized Cells on Dried Raisin Berries in Sensory Evaluation Comparison with Commercial Products. J. Sci. Food Agric. 2006, 86, 539–543. [Google Scholar] [CrossRef]
- Jackson, R.S. Sensory Perception and Wine Assessment. In Wine Science; Academic Press, Inc.: San Diego, CA, USA, 2014; pp. 641–685. [Google Scholar]
- Field, A.P. Discovering Statistics Using SPSS, 3rd ed.; Sage Publications Ltd: London, UK, 2009; ISBN 9781847879066. [Google Scholar]
- Eriotou, E.; Karabagias, I.K.; Maina, S.; Koulougliotis, D.; Kopsahelis, N. Geographical Origin Discrimination of “Ntopia” Olive Oil Cultivar from Ionian Islands Using Volatile Compounds Analysis and Computational Statistics. Eur. Food Res. Technol. 2021, 247, 3083–3098. [Google Scholar] [CrossRef] [PubMed]
- Boura, K.; Dima, A.; Nigam, P.S.; Panagopoulos, V.; Kanellaki, M.; Koutinas, A. A Critical Review for Advances on Industrialization of Immobilized Cell Bioreactors: Economic Evaluation on Cellulose Hydrolysis for PHB Production. Bioresour. Technol. 2022, 349, 126757. [Google Scholar] [CrossRef]
- Bardi, E.P.; Bakoyianis, V.; Koutinas, A.A.; Kanellaki, M. Room Temperature and Low Temperature Wine Making Using Yeast Immobilized on Gluten Pellets. Process Biochem. 1996, 31, 425–430. [Google Scholar] [CrossRef]
- Scalbert, A.; Johnson, I.T.; Saltmarsh, M. Polyphenols: Antioxidants and Beyond. Am. J. Clin. Nutr. 2005, 81, 215–217. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Moreno, C.; Larrauri, J.A.; Saura-Calixto, F. Free Radical Scavenging Capacity of Selected Red, Rose and White Wines. J. Sci. Food Agric. 1999, 79, 1301–1304. [Google Scholar] [CrossRef]
- Fernández-Pachón, M.S.; Villaño, D.; García-Parrilla, M.C.; Troncoso, A.M. Antioxidant Activity of Wines and Relation with Their Polyphenolic Composition. Anal. Chim. Acta 2004, 513, 113–118. [Google Scholar] [CrossRef]
- Gironi, F.; Piemonte, V. Temperature and Solvent Effects on Polyphenol Extraction Process from Chestnut Tree Wood. Chem. Eng. Res. Des. 2011, 89, 857–862. [Google Scholar] [CrossRef]
- Capparucci, C.; Gironi, F.; Piemonte, V. Equilibrium and Extraction Kinetics of Tannins from Chestnut Tree Wood in Water Solutions. Asia-Pacific J. Chem. Eng. 2011, 6, 606–612. [Google Scholar] [CrossRef]
- de Carvalho, A.P.A.; Conte-Junior, C.A. Health Benefits of Phytochemicals from Brazilian Native Foods and Plants: Antioxidant, Antimicrobial, Anti-Cancer, and Risk Factors of Metabolic/Endocrine Disorders Control. Trends Food Sci. Technol. 2021, 111, 534–548. [Google Scholar] [CrossRef]
- Yu, D.; Wang, J.; Shao, X.; Xu, F.; Wang, H. Antifungal Modes of Action of Tea Tree Oil and Its Two Characteristic Components against Botrytis Cinerea. J. Appl. Microbiol. 2015, 119, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Chanotiya, C.S.; Agarwal, G.; Prakash, O.; Pant, A.K.; Mathela, C.S. Terpenoid Compositions, and Antioxidant and Antimicrobial Properties of the Rhizome Essential Oils of Different Hedychium Species. Chem. Biodivers. 2008, 5, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Khaleel, C.; Tabanca, N.; Buchbauer, G. α-Terpineol, a Natural Monoterpene: A Review of Its Biological Properties. Open Chem. 2018, 16, 349–361. [Google Scholar] [CrossRef]
- Weston-Green, K.; Clunas, H.; Jimenez Naranjo, C. A Review of the Potential Use of Pinene and Linalool as Terpene-Based Medicines for Brain Health: Discovering Novel Therapeutics in the Flavours and Fragrances of Cannabis. Front. Psychiatry 2021, 12, 583211. [Google Scholar] [CrossRef]
- de Elguea-Culebras, G.O.; Sánchez-Vioque, R.; Berruga, M.I.; Herraiz-Peñalver, D.; Santana-Méridas, O. Antifeedant Effects of Common Terpenes from Mediterranean Aromatic Plants on Leptinotarsa Decemlineata. J. Soil Sci. Plant Nutr. 2017, 17, 475–485. [Google Scholar] [CrossRef]
- Kessler, A.; Sahin-Nadeem, H.; Lummis, S.C.R.; Weigel, I.; Pischetsrieder, M.; Buettner, A.; Villmann, C. GABAA Receptor Modulation by Terpenoids from Sideritis Extracts. Mol. Nutr. Food Res. 2014, 58, 851–862. [Google Scholar] [CrossRef]
- Ruiz, J.; Kiene, F.; Belda, I.; Fracassetti, D.; Marquina, D.; Navascués, E.; Calderón, F.; Benito, A.; Rauhut, D.; Santos, A.; et al. Effects on Varietal Aromas during Wine Making: A Review of the Impact of Varietal Aromas on the Flavor of Wine. Appl. Microbiol. Biotechnol. 2019, 103, 7425–7450. [Google Scholar] [CrossRef]
- Caputo, R.; Mangoni, L.; Monaco, P.; Palumbo, G. Triterpenes of Galls of Pistacia Terebinthus: Galls Produced by Pemphigus Utricularius. Phytochemistry 1974, 8, 809–811. [Google Scholar]
Fermentation Temperature (°C) | Fermentation Batch | Fermentation Time (h) | Ethanol (%v/v) | Ethanol Productivity (g/L/d) | Residual Sugar (g/L) | Sugar Conversion (%) |
---|---|---|---|---|---|---|
28 | 1–9 | 124.4 ± 6.3 a | 11.89 ± 0.23 e | 18.14 ± 1.10 g | 23.2 ± 5.0 k | 89.16 ± 2.34 m |
21 | 10–15 | 286.3 ± 14.3 b | 11.08 ± 0.48 f | 7.35 ± 0.56 h | 26.0 ± 4.2 k | 87.85 ± 1.99 m |
14 | 16–19 | 611.5 ± 12.6 c | 10.88 ± 0.28 f | 3.37 ± 0.15 i | 27.4 ± 1.9 k | 87.18 ± 0.87 m |
7 | 20–22 | 3600.3 ± 48.7 d | 10.70 ± 0.20 f | 0.56 ± 0.01 j | 40.2 ± 1.4 l | 81.17 ± 0.66 n |
Fermentation Temperature (°C) | Fermentation Batch | Fermentation Time (h) | Ethanol (%v/v) | Ethanol Productivity (g/L/d) | Residual Sugar (g/L) | Sugar Conversion (%) |
---|---|---|---|---|---|---|
28 | 1–10 | 80.9 ± 3.14 a | 11.98 ± 0.39 e | 28.09 ± 1.37 f | 12.0 ± 2.1 j | 94.39 ± 0.96 l |
21 | 11–17 | 154 ± 5.54 b | 11.72 ± 0.52 e | 14.42 ± 0.86 g | 19.3 ± 2.2 k | 90.97 ± 1.03 m |
14 | 18–23 | 362.3 ± 16.12 c | 11.64 ± 0.25 e | 6.09 ± 0.27 h | 20.7 ± 1.6 k | 90.34 ± 0.74 m |
7 | 24–27 | 1794.3 ± 108.6 d | 11.51 ± 0.11 e | 1.22 ± 0.07 i | 23.9 ± 3.5 k | 88.83 ± 1.65 mn |
Fermentation Temperature (°C) | Fermentation Batch | Methanol (mg/L) | Acetaldehyde (mg/L) | Ethyl Acetate (mg/L) | 1-Propanol (mg/L) | Isobutyl Alcohol (mg/L) | Amyl Alcohol (mg/L) |
---|---|---|---|---|---|---|---|
28 | 1–10 | 101.39 ± 17.75 a | 94.12 ± 4.92 c | 23.75 ± 2.75 e | 35.60 ± 4.54 i | 73.11 ± 5.01 l | 99.07 ± 6.08 o |
21 | 11–17 | 119.68 ± 20.46 a | 89.68 ± 8.26 c | 52.31 ± 4.61 f | 40.38 ± 8.34 i | 68.49 ± 7.49 l | 72.35 ± 10.40 p |
14 | 18–23 | 121.37 ± 21.90 a | 98.67 ± 8.43 c | 66.72 ± 5.31 g | 55.14 ± 3.72 j | 44.07 ± 6.46 m | 64.23 ± 12.01 p |
7 | 24–27 | 139.46 ± 13.59 ab | 104.62 ± 6.37 cd | 36.85 ± 1.67 h | 19.71 ± 1.64 k | 12.01 ± 1.83 n | 30.00 ± 0.80 q |
Fermentation Temperature (°C) | Fermentation Batch | Methanol (mg/L) | Acetaldehyde (mg/L) | Ethyl Acetate (mg/L) | 1-Propanol (mg/L) | Isobutyl Alcohol (mg/L) | Amyl Alcohol (mg/L) |
---|---|---|---|---|---|---|---|
28 | 1–9 | 112.14 ± 27.56 a | 97.85 ± 6.97 c | 67.75 ± 6.80 d | 26.90 ± 3.74 g | 92.93 ± 4.32 j | 107.00 ± 8.34 n |
21 | 10–15 | 120.84 ± 30.86 a | 104.47 ± 9.31 c | 26.97 ± 3.61 e | 40.62 ± 4.04 h | 80.79 ± 9.93 k | 95.07 ± 7.25 o |
14 | 16–19 | 143.85 ± 6.00 ab | 105.24 ± 11.23 c | 34.73 ± 3.60 e | 38.20 ± 2.68 h | 58.10 ± 8.62 l | 73.50 ± 4.16 p |
7 | 20–22 | 176.13 ± 4.55 b | 107.67 ± 4.84 c | 9.68 ± 1.53 f | 18.84 ± 1.35 i | 19.11 ± 1.86 m | 36.2 ± 4.31 q |
No | Compound | R.I | R.I.B | 28 °C | 21 °C | 14 °C | 7 °C | Identification Method | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
I/W | F/W | I/W | F/W | I/W | F/W | I/W | F/W | |||||
1 | Ethyl Acetate | 879 | 885 | + | + | + | + | + | + | + | + | a,b |
2 | Ethanol | 885 | 883 | + | + | + | + | + | + | + | + | a,b |
3 | 2,5-Hexanediol | 969 | 907 | + | - | + | - | - | - | - | - | b |
4 | α-Pinene | 994 | 1017 | + | - | + | - | - | - | - | - | b |
5 | Toluene | 1015 | 1043 | + | + | - | - | - | - | - | - | b |
6 | Z-β-Ocimene | 1019 | 1035 | + | - | + | - | - | - | - | - | b |
7 | 2-Fluoro-1-propene | 1063 | 1079 | + | + | + | + | + | - | - | - | b |
8 | β-Pinene | 1085 | 1100 | + | - | + | - | - | - | - | - | b |
9 | Isoamyl Acetate | 1110 | 1114 | + | + | + | + | + | - | - | - | b |
10 | 4-Methyl-2-Pentanol | 1138 | Ε.Σ | + | + | + | + | + | + | + | + | - |
11 | δ-3-Carene | 1143 | 1141 | + | - | + | - | - | - | - | - | b |
12 | Limonene | 1167 | 1200 | + | - | + | - | + | - | + | - | b |
13 | Dehydro-1,8-Cineole | 1179 | 1195 | + | - | + | - | - | - | - | - | b |
14 | 1-Butanol | 1182 | 1179 | + | + | + | + | - | - | - | - | b |
15 | 1,8-Cineole | 1205 | 1208 | + | - | + | - | - | - | - | - | b |
16 | Isoamyl Alcohol | 1206 | 1200 | + | + | + | + | + | + | + | + | b |
17 | Ethyl Hexanoate | 1231 | 1258 | + | + | + | + | + | + | + | + | b |
18 | p-menth-1-en-9-al | 1235 | 1228 | + | - | + | - | - | - | - | - | b |
19 | p-Cymene | 1246 | 1275 | + | - | + | - | - | - | - | - | b |
20 | Terpinolene | 1252 | 1283 | + | - | + | - | - | - | - | - | b |
21 | 3-Penten-1-ol | 1264 | 1305 | + | - | + | - | - | - | - | - | b |
22 | o-Cymene | 1270 | 1291 | + | - | - | - | - | - | - | - | b |
23 | Furfuryl Ether | 1277 | - | - | + | - | + | + | + | + | + | c |
24 | 4-Penten-1-ol | 1294 | 1312 | + | + | + | + | - | - | - | - | b |
25 | p-Menth-2-ene | 1303 | - | + | - | - | - | - | - | - | - | c |
26 | 6-Methyl-5-Hepten-2-One | 1305 | 1319 | + | + | + | + | - | - | - | - | b |
27 | 3-Methyl-2-Buten-1-ol | 1309 | 1320 | + | + | + | + | - | - | - | - | b |
28 | 4-Methyl-1-pentanol | 1322 | 1329 | + | - | + | - | - | - | - | - | b |
29 | 2-Heptanol | 1329 | 1334 | + | - | + | - | - | - | - | - | b |
30 | 1-Hexanol | 1332 | 1354 | + | - | + | - | - | - | - | - | b |
31 | Verbenyl Ethyl Ether | 1333 | 1371 | + | - | + | - | + | - | + | - | b |
32 | Ethyl Lactate | 1340 | 1344 | + | + | + | + | + | + | + | + | b |
33 | p-1,3,8-Menthatriene | 1346 | - | + | - | + | - | + | - | - | - | c |
34 | Nonanal | 1357 | 1390 | - | + | + | - | - | - | - | - | b |
35 | o-Methylanisole | 1369 | 1393 | + | - | + | - | - | - | - | - | b |
36 | Ethyl Octanoate | 1402 | 1424 | + | + | + | + | + | + | + | + | b |
37 | 3-Ethoxy-1-propanol | 1415 | 1419 | - | + | - | + | + | + | + | + | b |
38 | Heptanol | 1416 | 1443 | + | + | + | + | + | + | - | - | b |
39 | Furfural | 1427 | 1452 | + | + | + | + | - | - | - | - | b |
40 | 2-Octanol | 1435 | 1430 | - | + | - | + | - | + | - | + | b |
41 | Dehydro-p-Cymene | 1438 | 1432 | + | - | + | - | + | - | - | - | b |
42 | 2-Ethyl-1-Hexanol | 1448 | 1492 | + | - | + | + | + | + | + | + | b |
43 | Acetic Acid | 1450 | 1445 | + | + | + | + | + | + | + | + | b |
44 | Linalool Oxide | 1464 | 1460 | + | - | + | - | - | - | - | - | b |
45 | Camphor | 1467 | 1495 | + | - | + | - | - | - | - | - | b |
46 | Benzaldehyde | 1480 | 1514 | + | + | + | + | - | - | - | - | b |
47 | α-Campholenal | 1484 | 1482 | + | - | - | - | - | - | - | - | b |
48 | Pinocamphone | 1495 | - | + | - | + | - | - | - | - | - | c |
49 | trans-Chrysanthenyl Acetate | 1511 | 1582 | + | - | + | - | - | - | - | - | b |
50 | 2-nonanol | 1513 | 1528 | - | + | - | + | - | + | - | + | b |
51 | Pinocarvone | 1521 | 1561 | + | - | + | - | - | - | - | - | b |
52 | Linalool | 1536 | 1552 | + | - | + | - | + | - | + | - | b |
53 | Fenchol | 1541 | 1574 | + | - | + | - | - | - | - | - | b |
54 | 2,3-Butanediol | 1547 | 1559 | + | + | + | + | + | + | + | + | b |
55 | Bornyl Acetate | 1550 | 1565 | + | - | + | - | + | - | + | - | b |
56 | 3-Methylcamphenilol | 1551 | 1592 | + | - | - | - | - | - | - | - | b |
57 | 6-Methyl-3,5-Heptadien-2-one | 1554 | 1602 | + | - | + | - | - | - | - | - | b |
58 | Isopinocamphone | 1557 | 1562 | + | - | + | - | - | - | - | - | b |
59 | 4-Terpineol | 1562 | 1593 | + | - | + | - | + | - | + | - | b |
60 | 1-Octanol | 1565 | 1570 | - | + | - | + | - | + | - | + | b |
61 | Dihydrocarvone | 1569 | 1600 | + | - | + | - | - | - | - | - | b |
62 | 2-Undecanol | 1573 | - | + | + | + | + | + | + | + | + | c |
63 | 5-Methyl-Furfural | 1580 | 1578 | - | - | - | + | + | + | + | + | b |
64 | Myrtenal | 1588 | 1602 | + | - | + | - | - | - | - | - | b |
65 | 1,3-Butanediol | 1592 | 1590 | - | + | - | + | + | + | + | + | b |
66 | Ethyl Decanoate | 1597 | 1591 | + | + | + | + | + | + | + | + | b |
67 | p-Isopropyl-Cyclohexanol | 1603 | - | + | - | - | - | - | - | - | - | c |
68 | L-trans-Pinocarveol | 1618 | 1632 | + | - | + | - | + | - | + | - | b |
69 | α-Phellandren-8-ol | 1626 | 1710 | + | - | + | - | + | - | + | - | b |
70 | Pinocarvyl Acetate | 1631 | 1661 | + | - | + | - | + | - | - | - | b |
71 | δ-Terpineol | 1633 | 1668 | + | - | - | - | - | - | - | - | b |
72 | Succinic Acid Diethyl Ester | 1638 | 1658 | + | + | + | + | + | + | + | + | b |
73 | Acetophenone | 1643 | 1643 | + | + | - | - | - | - | - | - | b |
74 | 2-Bornylene | 1645 | - | + | - | + | - | + | - | + | - | c |
75 | Ethyl-4-decenoate | 1651 | 1692 | + | - | + | - | + | - | + | - | b |
76 | estragole | 1657 | 1661 | - | - | - | - | + | + | + | + | b |
77 | α-Terpineol | 1665 | 1669 | + | + | + | + | + | + | + | + | b |
78 | Borneol | 1668 | 1677 | + | - | + | - | + | - | + | - | b |
79 | trans-Verbenol | 1679 | 1679 | + | - | + | - | + | - | - | - | b |
80 | Methionol | 1683 | - | + | + | + | + | + | + | + | + | c |
81 | Verbenone | 1705 | 1695 | + | - | + | - | + | - | + | - | b |
82 | Carvone | 1707 | 1711 | + | - | + | - | + | - | - | - | b |
83 | Carvotanacetol | 1711 | - | + | - | + | - | + | - | - | - | c |
84 | Ethyl 9-Decenoate | 1715 | 1711 | + | + | + | + | + | + | + | - | b |
85 | exo-2-Hydroxycineol | 1719 | 1723 | + | - | + | - | + | - | - | - | b |
86 | 1-Decanol | 1727 | 1783 | + | + | - | + | - | + | - | - | b |
87 | p-Methyl-Acetophenone | 1754 | 1763 | + | + | + | + | + | + | + | - | b |
88 | β-Phellandren-8-ol | 1757 | - | + | - | + | - | + | - | + | - | c |
89 | Myrtenol | 1777 | 1788 | + | - | + | - | + | - | + | - | b |
90 | 9-Decenol | 1783 | - | - | + | - | + | - | + | - | - | c |
91 | β-Citronellol | 1792 | 1790 | + | + | + | + | + | + | + | + | b |
92 | 2-Phenylethyl Acetate | 1794 | 1795 | + | + | + | + | + | + | + | + | b |
93 | Anethole | 1806 | 1815 | - | - | + | + | + | + | + | + | b |
94 | trans-Carveol | 1812 | 1825 | + | - | + | - | + | - | - | - | b |
95 | Ethyl Dodecanoate | 1824 | 1833 | + | + | + | + | + | + | + | - | b |
96 | p-cymen-8-ol | 1828 | 1833 | + | - | + | - | + | - | + | - | b |
97 | Hexanoic Acid | 1839 | 1829 | - | + | - | + | + | + | + | + | b |
98 | cis-Carveol | 1845 | 1848 | + | - | + | - | + | - | + | - | b |
99 | trans-Myrtanol | 1854 | 1856 | + | - | + | - | - | - | - | - | b |
100 | Benzyl alcohol | 1857 | 1889 | + | + | + | + | + | - | - | - | b |
101 | p-cymen-9-ol | 1878 | - | + | - | - | - | - | - | - | - | c |
102 | 3-Methylbutyl Pentadecanoate | 1885 | 1889 | + | - | + | - | - | - | - | - | b |
103 | Ethyl Pentadecanoate | 1895 | 1897 | + | - | + | - | + | + | + | + | b |
104 | Phenylethyl Alcohol | 1896 | 1908 | + | + | + | + | + | + | + | + | b |
105 | Piperitenone | 1917 | 1918 | + | - | - | - | - | - | - | - | b |
106 | 1-Tridecanol | 1947 | 1954 | - | - | + | - | + | - | + | - | b |
107 | 1-Dodecanol | 1953 | 1969 | + | - | + | - | + | - | + | + | b |
108 | Ethyl 9-Hexadecenoate | 1974 | 1977 | + | + | + | + | + | + | + | + | b |
109 | Octanoic Acid | 2056 | 2056 | + | + | + | + | + | + | + | + | b |
110 | p-Cresol | 2071 | 2076 | + | - | + | - | - | - | - | - | b |
111 | Ethyl Myristate | 2084 | 2094 | + | - | + | - | - | + | - | + | b |
112 | Spathulenol | 2103 | 2104 | + | - | - | - | - | - | - | - | b |
113 | Nonanoic Acid | 2164 | 2192 | + | - | + | - | + | - | - | - | b |
114 | Ethyl Palmitate | 2243 | 2251 | + | - | + | - | + | + | + | + | b |
115 | Capric Acid | 2263 | 2256 | + | + | + | + | + | + | + | + | b |
116 | Ethyl-9-Hexadecanoate | 2275 | 2292 | + | - | + | - | + | + | + | + | b |
117 | Undecylenic Acid | 2289 | - | - | + | - | + | + | - | + | - | c |
118 | 2,4-Bis-(1,1-dimethylethyl) Phenol | 2298 | 2312 | + | + | - | - | - | - | - | - | b |
119 | Farnesol | 2323 | 2343 | + | - | + | - | + | + | + | + | b |
120 | Hexadecanol | 2347 | 2359 | + | - | + | - | + | - | - | - | b |
121 | Ethyl-9-octadecenoate | 2458 | 2435 | + | + | + | + | + | + | + | + | b |
122 | Lauric Acid | 2516 | 2517 | + | + | + | + | + | + | + | + | b |
123 | Myristic Acid | 2647 | 2670 | + | + | + | + | + | + | + | + | b |
124 | Palmitic Acid | > | 2700 | + | + | + | + | + | + | + | + | b |
125 | Oleic Acid | > | 2700 | + | + | + | + | + | + | + | + | b |
Compound | 28 °C | 21 °C | 14 °C | 7 °C | Total | ||||
---|---|---|---|---|---|---|---|---|---|
I/W | F/W | I/W | F/W | I/W | F/W | I/W | F/W | ||
Alcohols | 46 | 20 | 40 | 20 | 29 | 17 | 22 | 15 | 53 |
Terpenoids | 25 | 2 | 20 | 2 | 16 | 3 | 12 | 3 | 25 |
Esters | 21 | 12 | 21 | 12 | 18 | 15 | 16 | 13 | 21 |
Terpenoids | 3 | - | 3 | - | 2 | - | 1 | - | 3 |
Organic acids | 8 | 9 | 8 | 9 | 10 | 8 | 9 | 8 | 10 |
Terpenoids | - | - | - | - | - | - | - | - | - |
Aldehydes | 5 | 3 | 5 | 3 | 1 | 1 | 1 | 1 | 7 |
Terpenoids | 3 | - | 2 | - | - | - | - | - | 3 |
Ketones | 12 | 3 | 10 | 2 | 3 | 1 | 2 | - | 12 |
Terpenoids | 9 | - | 8 | - | 2 | - | 1 | - | 9 |
Hydrocarbons | 13 | 1 | 10 | - | 4 | - | 2 | - | 13 |
Terpenoids | 12 | - | 10 | - | 4 | - | 2 | - | 12 |
Other compounds | 5 | 3 | 6 | 4 | 6 | 4 | 5 | 4 | 8 |
Terpenoids | 2 | - | 2 | - | 1 | - | 1 | - | 2 |
Total compounds | 110 | 51 | 100 | 50 | 71 | 46 | 57 | 41 | 124 |
Total terpenoids | 54 | 2 | 45 | 2 | 25 | 3 | 17 | 3 | 54 |
Fermentation Temperature (°C) | Fermentation Using Immobilized Cells | Fermentation Using Free Cells | ||
---|---|---|---|---|
Fermentation Batch | Polyphenolic Content (mg GAE/L) | Fermentation Batch | Polyphenolic Content (mg GAE/L) | |
28 | 1, 3, 5, 7, 9 | 377.2 ± 25.3 a | 1, 3, 5, 7, 8 | 302.7 ± 29.2 A |
21 | 10, 12, 14, 16, 17 | 392.7 ± 15.1 a | 9, 10, 11, 13, 15 | 266.1 ± 23.9 A |
14 | 19, 20, 21, 23 | 324.3 ± 11.4 b | 16, 17, 18, 19 | 242.9 ± 9.7 AB |
7 | 25, 26, 27 | 305.4 ± 15 b | 20, 21, 22 | 221.7 ± 7.2 AB |
Fermentation Temperature (°C) | Fermentation Using Immobilized Cells | Fermentation Using Free Cells | ||
---|---|---|---|---|
Fermentation Batch | EC50 (mL Wine/g DPPH˙) | Fermentation Batch | EC50 (mL Wine/g DPPH˙) | |
28 | 1, 3, 5, 7, 9 | 544.2 ± 0.6 a | 1, 3, 5, 7, 8 | 700.5 ± 1.1 A |
21 | 10, 12, 14, 16, 17 | 537.8 ± 1.1 b | 9, 10, 11, 13, 15 | 761 ± 0.7 B |
14 | 19, 20, 21, 23 | 597.5 ± 0.8 c | 16, 17, 18, 19 | 918.4 ± 3 C |
7 | 25, 26, 27 | 654.2 ± 0.8 d | 20, 21, 22 | 990.1 ± 1 D |
Fermentation Temperature (°C) | Fermentation Using Immobilized Cells | Fermentation Using Free Cells | ||||||
---|---|---|---|---|---|---|---|---|
Total Acidity (g Tartaric Acid/L) | Total Acidity (g Tartaric Acid/L) | |||||||
Fermentation Batch | 0 Days | >30 Days (22–28 °C) | >90 Days (4 °C) | Fermentation Batch | 0 Days | >30 Days (22–28 °C) | >90 Days (4 °C) | |
28 | 1, 3, 5, 7, 9 | 6.0 ± 0.4 a | 5.7 ± 0.3 c | 5.4 ± 0.4 e | 1, 3, 5, 7, 8 | 5.3 ± 0.2 a | 5.1 ± 0.2 c | 4.8 ± 0.2 d |
21 | 10, 12, 14, 16, 17 | 5.3 ± 0.5 a | 5.1 ± 0.5 c | 4.7 ± 0.5 e | 9, 10, 11, 13, 15 | 5.3 ± 0.2 a | 5.0 ± 0.2 c | 4.6 ± 0.3 d |
14 | 19, 20, 21, 23 | 5.0 ± 0.7 ab | 4.9 ± 0.6 c | 4.5 ± 0.5 ef | 16, 17, 18, 19 | 5.2 ±0.6 a | 5.0 ± 0.7 c | 4.7 ± 0.5 d |
7 | 25, 26, 27 | 4.8 ± 0.3 ab | 4.7 ± 0.3 d | 4.6 ± 0.2 ef | 20, 21, 22 | 4.5 ± 0.1 ab | 4.4 ± 0.1 c | 4.3 ± 0.1 d |
Fermentation Temperature (°C) | Fermentation Using Immobilized Cells | Fermentation Using Free Cells | ||||||
---|---|---|---|---|---|---|---|---|
Volatile Acidity (g Acetic acid/L) | Volatile Acidity (g Acetic Acid/L) | |||||||
Fermentation Batch | 0 Days | >30 Days (22–28 °C) | >90 Days (4 °C) | Fermentation Batch | 0 Days | >30 Days (22–28 °C) | >90 Days (4 °C) | |
28 | 1, 3, 5, 7, 9 | 0.30 ± 0.04 a | 0.35 ± 0.03 b | 0.31 ± 0.04 d | 1, 3, 5, 7, 8 | 0.31 ± 0.04 a | 1.71 ± 0.16 b | 0.35 ± 0.03 d |
21 | 10, 12, 14, 16, 17 | 0.29 ± 0.02 a | 0.37 ± 0.03 b | 0.32 ± 0.01 d | 9, 10, 11, 13, 15 | 0.29 ± 0.02 a | 1.80 ± 0.10 b | 0.40 ± 0.04 d |
14 | 19, 20, 21, 23 | 0.29 ± 0.02 a | 0.41 ± 0.03 b | 0.33 ± 0.01 d | 16, 17, 18, 19 | 0.31 ± 0.03 a | 2.01 ± 0.28 b | 0.47 ± 0.02 e |
7 | 25, 26, 27 | 0.27 ± 0.02 a | 0.51 ± 0.01 c | 0.36 ± 0.02 d | 20, 21, 22 | 0.29 ± 0.02 a | 2.54 ± 0.40 c | 0.53 ± 0.02 f |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kallis, M.; Boura, K.; Karabagias, I.K.; Kanellaki, M.; Koutinas, A.A. Beneficial Effects of Pistacia terebinthus Resin on Wine Making. Appl. Sci. 2022, 12, 9097. https://doi.org/10.3390/app12189097
Kallis M, Boura K, Karabagias IK, Kanellaki M, Koutinas AA. Beneficial Effects of Pistacia terebinthus Resin on Wine Making. Applied Sciences. 2022; 12(18):9097. https://doi.org/10.3390/app12189097
Chicago/Turabian StyleKallis, Michalis, Konstantina Boura, Ioannis K. Karabagias, Maria Kanellaki, and Athanasios A. Koutinas. 2022. "Beneficial Effects of Pistacia terebinthus Resin on Wine Making" Applied Sciences 12, no. 18: 9097. https://doi.org/10.3390/app12189097
APA StyleKallis, M., Boura, K., Karabagias, I. K., Kanellaki, M., & Koutinas, A. A. (2022). Beneficial Effects of Pistacia terebinthus Resin on Wine Making. Applied Sciences, 12(18), 9097. https://doi.org/10.3390/app12189097