Clinical Impact of Balneotherapy and Therapeutic Exercise in Rheumatic Diseases: A Lexical Analysis and Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lexical Analysis
2.2. Scoping Review
3. Results
3.1. Osteoarthritis
Lexical Analysis
3.2. Fibromyalgia
Lexical Analysis
3.3. Rheumatoid Arthritis
Lexical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 Diseases and Injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [Green Version]
- Cieza, A.; Causey, K.; Kamenov, K.; Hanson, S.W.; Chatterji, S.; Vos, T. Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019, a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 2006–2017. [Google Scholar] [CrossRef]
- Jin, Z.; Wang, D.; Zhang, H.; Liang, J.; Feng, X.; Zhao, J.; Sun, L. Incidence trend of five common musculoskeletal disorders from 1990 to 2017 at the global, regional and national level: Results from the global burden of disease study 2017. Ann. Rheum. Dis. 2020, 79, 1014–1022. [Google Scholar] [CrossRef]
- Rausch Osthoff, A.K.; Niedermann, K.; Braun, J.; Adams, J.; Brodin, N.; Dagfinrud, H.; Duruoz, T.; Esbensen, B.A.; Günther, K.-P.; Hurkmans, E.; et al. 2018 EULAR recommendations for physical activity in people with inflammatory arthritis and osteoarthritis. Ann. Rheum. Dis. 2018, 77, 1251–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fioravanti, A. Foreword: Balneotherapy in rheumatic diseases. Int. J. Biometeorol. 2020, 64, 903–904. [Google Scholar] [CrossRef]
- Gutenbrunner, C.; Bender, T.; Cantista, P.; Karagülle, Z. A proposal for a worldwide definition of health resort medicine, balneology, medical hydrology and climatology. Int. J. Biometeorol. 2010, 54, 495–507. [Google Scholar] [CrossRef]
- Masiero, S. Thermal rehabilitation and osteoarticular diseases of the elderly. Aging Clin. Exp. Res. 2008, 20, 189–194. [Google Scholar] [CrossRef]
- Batterham, S.I.; Heywood, S.; Keating, J.L. Systematic review and meta-analysis comparing land and aquatic exercise for people with hip or knee arthritis on function, mobility and other health outcomes. BMC Musculoskelet. Disord. 2011, 12, 123. [Google Scholar] [CrossRef] [Green Version]
- Bernetti, A.; Mangone, M.; Alviti, F.; Paolucci, T.; Attanasi, C.; Murgia, M.; Di Sante, L.; Agostini, F.; Vitale, M.; Paoloni, M. Spa therapy and rehabilitation of musculoskeletal pathologies: A proposal for best practice in Italy. Int. J. Biometeorol. 2020, 64, 905–914. [Google Scholar] [CrossRef]
- Forestier, R.; Desfour, H.; Tessier, J.M.; Francon, A.; Foote, A.M.; Genty, C.; Rolland, C.; Roques, C.-F.; Bosson, J.-L. Spa therapy in the treatment of knee osteoarthritis: A large randomised multicentre trial. Ann. Rheum. Dis. 2010, 69, 660–665. [Google Scholar] [CrossRef] [Green Version]
- Karagülle, M.; Karagülle, M.Z. Effectiveness of balneotherapy and spa therapy for the treatment of chronic low back pain: A review on latest evidence. Clin. Rheumatol. 2015, 34, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, H.; Hagino, H.; Hayashi, K.; Ideno, Y.; Wada, T.; Ogata, T.; Akai, M.; Seichi, A.; Iwaya, T. The effect of balneotherapy on pain relief, stiffness, and physical function in patients with osteoarthritis of the knee: A meta-analysis. Clin. Rheumatol. 2017, 36, 1839–1847. [Google Scholar] [CrossRef] [PubMed]
- Coraci, D.; Giovannini, S.; Fusco, A.; Loreti, C.; Padua, L. Low Back Pain: Literature Review Based on Graph Theory. Pain Pract. 2020, 20, 946–947. [Google Scholar] [CrossRef]
- Coraci, D.; Loreti, C.; Fusco, A.; Giovannini, S.; Padua, L. Peripheral neuropathies seen by ultrasound: A literature analysis through lexical evaluation, geographical assessment and graph theory. Brain Sci. 2021, 11, 113. [Google Scholar] [CrossRef] [PubMed]
- Rat, A.C.; Loeuille, D.; Vallata, A.; Bernard, L.; Spitz, E.; Desvignes, A.; Boulange, M.; Paysant, J.; Guillemin, F.; Chary-Valckenaere, I. Spa therapy with physical rehabilitation is an alternative to usual spa therapy protocol in symptomatic knee osteoarthritis. Sci. Rep. 2020, 10, 11004. [Google Scholar] [CrossRef] [PubMed]
- Kovács, C.; Bozsik, Á.; Pecze, M.; Borbély, I.; Fogarasi, A.; Kovács, L.; Tefner, I.K.; Bender, T. Effects of sulfur bath on hip osteoarthritis: A randomized, controlled, single-blind, follow-up trial: A pilot study. Int. J. Biometeorol. 2016, 60, 1675–1680. [Google Scholar] [CrossRef]
- Forestier, R.; Genty, C.; Waller, B.; Françon, A.; Desfour, H.; Rolland, C.; Roques, C.-F.; Bosson, J.-L. Crenobalneotherapy (spa therapy) in patients with knee and generalized osteoarthritis: A post-hoc subgroup analysis of a large multicentre randomized trial. Ann. Phys. Rehabil. Med. 2014, 57, 213–227. [Google Scholar] [CrossRef] [Green Version]
- Fioravanti, A.; Tenti, S.; Giannitti, C.; Fortunati, N.A.; Galeazzi, M. Short- and long-term effects of mud-bath treatment on hand osteoarthritis: A randomized clinical trial. Int. J. Biometeorol. 2014, 58, 79–86. [Google Scholar] [CrossRef]
- Yurtkuran, M.; Yurtkuran, M.; Alp, A.; Nasırcılar, A.; Bingöl, Ü.; Sarpdere, G. Balneotherapy and tap water therapy in the treatment of knee osteoarthritis. Rheumatol. Int. 2006, 27, 19–27. [Google Scholar] [CrossRef]
- Fazaa, A.; Souabni, L.; Ben Abdelghani, K.; Kassab, S.; Chekili, S.; Zouari, B.; Hajri, R.; Laatar, A.; Zakraoui, L. Comparison of the clinical effectiveness of thermal cure and rehabilitation in knee osteoarthritis. A randomized therapeutic trial. Ann. Phys. Rehabil. Med. 2014, 57, 561–569. [Google Scholar] [CrossRef] [Green Version]
- Angioni, M.M.; Denotti, A.; Pinna, S.; Sanna, C.; Montisci, F.; Dessole, G.; Loi, A.; Cauli, A. Spa therapy induces clinical improvement and protein changes in patients with chronic back pain. Reumatismo 2019, 71, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Kasapoğlu Aksoy, M.; Altan, L.; Eröksüz, R.; Metin Ökmen, B. The efficacy of peloid therapy in management of hand osteoarthritis: A pilot study. Int. J. Biometeorol. 2017, 61, 2145–2152. [Google Scholar] [CrossRef] [PubMed]
- Gay, C.; Guiguet-Auclair, C.; Coste, N.; Boisseau, N.; Gerbaud, L.; Pereira, B.; Coudeyre, E. Limited effect of a self-management exercise program added to spa therapy for increasing physical activity in patients with knee osteoarthritis: A quasi-randomized controlled trial. Ann. Phys. Rehabil. Med. 2020, 63, 181–188. [Google Scholar] [CrossRef]
- Bağdatlı, A.O.; Donmez, A.; Eröksüz, R.; Bahadır, G.; Turan, M.; Erdoğan, N. Does addition of ‘mud-pack and hot pool treatment’ to patient education make a difference in fibromyalgia patients? A randomized controlled single blind study. Int. J. Biometeorol. 2015, 59, 1905–1911. [Google Scholar] [CrossRef] [PubMed]
- Zijlstra, T.R.; van de Laar, M.A.F.J.; Bernelot Moens, H.J.; Taal, E.; Zakraoui, L.; Rasker, J.J. Spa treatment for primary fibromyalgia syndrome: A combination of thalassotherapy, exercise and patient education improves symptoms and quality of life. Rheumatology 2005, 44, 539–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altan, L.; Bingöl, U.; Aykaç, M.; Koç, Z.; Yurtkuran, M. Investigation of the effects of pool-based exercise on fibromyalgia syndrome. Rheumatol. Int. 2004, 24, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Franke, A.; Reiner, L.; Resch, K.L. Long-term benefit of radon spa therapy in the rehabilitation of rheumatoid arthritis: A randomised, double-blinded trial. Rheumatol. Int. 2007, 27, 703–713. [Google Scholar] [CrossRef]
- Fioravanti, A.; Karagülle, M.; Bender, T.; Karagülle, M.Z. Balneotherapy in osteoarthritis: Facts, fiction and gaps in knowledge. Eur. J. Integr. Med. 2017, 9, 148–150. [Google Scholar] [CrossRef]
- Fox, B.; Schantz, J.T.; Haigh, R.; Wood, M.E.; Moore, P.K.; Viner, N.; Spencer Jeremy, P.E.; Winyard, P.G.; Whiteman, M. Inducible hydrogen sulfide synthesis in chondrocytes and mesenchymal progenitor cells: Is H2S a novel cytoprotective mediator in the inflamed joint? J. Cell. Mol. Med. 2012, 16, 896–910. [Google Scholar] [CrossRef]
- Li, L.; Fox, B.; Keeble, J.; Salto-Tellez, M.; Winyard, P.G.; Wood, M.E.; Moore, P.K.; Whiteman, M. The complex effects of the slow-releasing hydrogen sulfide donor GYY4137 in a model of acute joint inflammation and in human cartilage cells. J. Cell. Mol. Med. 2013, 17, 365–376. [Google Scholar] [CrossRef] [Green Version]
- Kloesch, B.; Liszt, M.; Broell, J. H2S transiently blocks IL-6 expression in rheumatoid arthritic fibroblast-like synoviocytes and deactivates p44/42 mitogen-activated protein kinase. Cell Biol. Int. 2010, 34, 477–484. [Google Scholar] [CrossRef]
- Burguera, E.F.; Vela-Anero, Á.; Magalhães, J.; Meijide-Faílde, R.; Blanco, F. Effect of hydrogen sulfide sources on inflammation and catabolic markers on interleukin 1β-stimulated human articular chondrocytes. Osteoarthr. Cartil. 2014, 22, 1026–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, C.; Tian, S.; Sun, K.; Wang, D.; Lv, J.; Wang, Y. Hydrogen sulfide attenuates IL-1β-induced inflammatory signaling and dysfunction of osteoarthritic chondrocytes. Int. J. Mol. Med. 2015, 35, 1657–1666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sieghart, D.; Liszt, M.; Wanivenhaus, A.; Bröll, H.; Kiener, H.; Klösch, B.; Steiner, G. Hydrogen sulphide decreases IL-1β-induced activation of fibroblast-like synoviocytes from patients with osteoarthritis. J. Cell. Mol. Med. 2015, 19, 187–197. [Google Scholar] [CrossRef]
- Vela-Anero, Á.; Hermida-Gómez, T.; Gato-Calvo, L.; Vaamonde-García, C.; Díaz-Prado, S.; Meijide-Faílde, R.; Blanco, F.J.; Burguera, E.F. Long-term effects of hydrogen sulfide on the anabolic-catabolic balance of articular cartilage in vitro. Nitric Oxide-Biol. Chem. 2017, 1, 42–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fioravanti, A.; Lamboglia, A.; Pascarelli, N.A.; Cheleschi, S.; Manica, P.; Galeazzi, M.; Collodel, G. Thermal water of Vetriolo, Trentino, inhibits the negative effect of interleukin-1β on nitric oxide production and apoptosis in human osteoarthritic chondrocyte. J. Biol. Regul. Homeost. Agents 2013, 27, 891–902. [Google Scholar]
- Kloesch, B.; Liszt, M.; Krehan, D.; Broell, J.; Kiener, H.; Steiner, G. High concentrations of hydrogen sulphide elevate the expression of a series of pro-inflammatory genes in fibroblast-like synoviocytes derived from rheumatoid and osteoarthritis patients. Immunol. Lett. 2012, 141, 197–203. [Google Scholar] [CrossRef]
- Cozzi, F.; Carrara, M.; Sfriso, P.; Todesco, S.; Cima, L. Anti-inflammatory effect of mud-bath applications on adjuvant arthritis in rats. Clin. Exp. Rheumatol. 2004, 22, 763–766. [Google Scholar]
- Caraglia, M.; Beninati, S.; Giuberti, G.; D’Alessandro, A.M.; Lentini, A.; Abbruzzese, A.; Bove, G.; Landolfi, F.; Rossi, F.; Lampa, E.; et al. Alternative therapy of earth elements increases the chondroprotective effects of chondroitin sulfate in mice. Exp. Mol. Med. 2005, 22, 763–766. [Google Scholar] [CrossRef] [Green Version]
- Britschka, Z.M.N.; Teodoro, W.R.; Velosa, A.P.P.; de Mello, S.B.V. The efficacy of Brazilian black mud treatment in chronic experimental arthritis. Rheumatol. Int. 2007, 28, 39–45. [Google Scholar] [CrossRef]
- Tékus, V.; Borbély, É.; Kiss, T.; Perkecz, A.; Kemény, Á.; Horváth, J.; Kvarda, A.; Pintér, E. Investigation of Lake Hévíz Mineral Water Balneotherapy and Hévíz Mud Treatment in Murine Osteoarthritis and Rheumatoid Arthritis Models. Evid.-Based Complement. Altern. Med. 2018, 2018, 4816905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaamonde-García, C.; Vela-Anero, Á.; Hermida-Gómez, T.; Fernández-Burguera, E.; Filgueira-Fernández, P.; Goyanes, N.; Blanco, F.J.; Meijide-Faílde, R. Effect of balneotherapy in sulfurous water on an in vivo murine model of osteoarthritis. Int. J. Biometeorol. 2020, 64, 307–318. [Google Scholar] [CrossRef] [PubMed]
- De Brito, R.N.; Ludtke, D.D.; de Oliveira, B.H.; de Oliveira Galassi, T.; Fernandes, P.F.; Van Den Berge, S.; Salgado, A.F.I.; Cidral-Filho, F.J.; Horewicz, V.V.; Bobinski, F.; et al. Balneotherapy decreases mechanical hyperalgesia by reversing BDNF and NOS2 immunocontent in spinal cord of mice with neuropathic pain. J. Neuroimmunol. 2020, 15, 577360. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, M.; Donelli, D. Effects of balneotherapy and spa therapy on levels of cortisol as a stress biomarker: A systematic review. Int. J. Biometeorol. 2018, 62, 913–924. [Google Scholar] [CrossRef] [PubMed]
- Masiero, S.; Litwocenko, S.; Agostini, F. Rehabilitation in an Italian thermal setting: A new therapeutic strategy for patients with musculoskeletal disability—The results of an Italian survey. Int. J. Biometeorol. 2020, 64, 951–954. [Google Scholar] [CrossRef] [PubMed]
- Musumeci, A.; Pranovi, G.; Masiero, S. Patient education and rehabilitation after hip arthroplasty in an Italian spa center: A pilot study on its feasibility. Int. J. Biometeorol. 2018, 62, 1489–1496. [Google Scholar] [CrossRef]
Word | Frequency | Percentage of Papers | Closeness Centrality | Betweenness Centrality | Modularity Class |
---|---|---|---|---|---|
PAIN | 242 | 71.304% | 0.605 | 2882.023 | 0 |
OSTEOARTHRITIS | 203 | 55.652% | 0.520 | 1973.552 | 0 |
SPA THERAPY | 121 | 24.348% | 0.409 | 524.651 | 3 |
BALNEOTHERAPY | 120 | 33.043% | 0.439 | 614.035 | 2 |
BATH | 114 | 39.130% | 0.459 | 867.504 | 1 |
WATER | 99 | 30.435% | 0.431 | 309.482 | 4 |
FIBROMYALGIA | 87 | 20.000% | 0.382 | 268.424 | 2 |
WOMAC | 64 | 27.826% | 0.421 | 117.673 | 0 |
SERUM | 55 | 15.652% | 0.388 | 234.543 | 1 |
MINERAL | 54 | 22.609% | 0.409 | 138.781 | 4 |
THERMAL | 54 | 20.000% | 0.399 | 135.333 | 4 |
EXERCISE | 53 | 14.783% | 0.386 | 170.211 | 3 |
JOINT | 53 | 27.826% | 0.423 | 414.819 | 0 |
QUESTIONNAIRE | 52 | 31.304% | 0.434 | 185.071 | 2 |
INFLAMMAT * | 42 | 16.522% | 0.386 | 260.842 | 1 |
TENDER * | 41 | 18.261% | 0.393 | 79.258 | 2 |
STIFFNESS | 37 | 21.739% | 0.406 | 107.399 | 0 |
QUALITY OF LIFE | 36 | 23.478% | 0.411 | 90.770 | 0 |
RHEUMATOID ARTHRITIS | 33 | 16.522% | 0.382 | 308.579 | 1 |
DRUG | 32 | 17.391% | 0.393 | 209.676 | 3 |
STRENGTH | 31 | 13.913% | 0.384 | 66.528 | 0 |
DEPRESSION | 25 | 12.174% | 0.370 | 20.494 | 3 |
REHABILITATION | 25 | 11.304% | 0.378 | 78.571 | 4 |
PHYSICAL FUNCTION | 22 | 11.304% | 0.374 | 19.066 | 0 |
PELOID | 19 | 6.087% | 0.353 | 144.595 | 0 |
VAS | 16 | 12.174% | 0.382 | 31.870 | 2 |
DISABILITY | 15 | 7.826% | 0.368 | 5.249 | 0 |
First Author (Publication Year) | Pathology | N (M/F) | Intervention | Comparison | Outcomes | Evaluation Times | Main Conclusions |
---|---|---|---|---|---|---|---|
Franke (2007) | RA | 134 (F) | Radon + CO2 baths | CO2 baths | VAS for everyday life limitation, pain intensity (PI), pain frequency (PF), functional capacity (FC), drug consumption | Baseline, end of the treatment, 4, 8 and 12 months | Favourable changes of pain relief in the radon group until at least 9 months’ postintervention compared to baseline |
Altan (2004) | FMS | 50 (F) | Pool-based exercise program in a therapeutic pool at 37 °C for 35 min a day three times a week for 12 weeks | Balneotherapy sessions of 35 min three times a week for 12 weeks in the same pool, without any exercise | VAS, morning stiffness, fatigue, sleep disorder parameters of the Hamilton depression scale, tender points, global evaluation of the patient, global evaluation of the physician, FIQ, chair test, BDI | Baseline, 12 and 24 weeks | No significant overall superiority of pool-based exercise over balneotherapy without exercise |
Bağdatlı (2015) | FMS | 70 (F) | Balneotherapy (10 heated pool baths 20 min at 38 °C) and 10 mud-pack applications + 6-h patient education programme on fibromyalgia syndrome | 6-h patient education programme on fibromyalgia syndrome | Patient’s Global Assessment, Investigator’s Global Assessment, FIQ, pain, fatigue, nonrefreshing sleep, stiffness, anxiety, depression and BDI | Baseline, end of the treatment, 1 month, 3 months | Significant improvements up to the end of the third month in patient’s and investigator’s global assessment scores, total FIQ score, and pain intensity, fatigue, non-refreshed awaking, stiffness, anxiety and depression subscales of FIQ and BDI as compared to baseline values in balneotherapy group |
Zijlstra (2005) | FMS | 134 (6 M/128 F) | Thalassotherapy (seven or eight sessions of: hamam, algotherapy, douche a‘ affusion, whirlpool, underwater jetstream massage, pool exercise and massage) + Supervised exercise and group education | Treatment as usual | RAND-36, VAS, FIQ, tender points score, 6-min walking test | Baseline, end of the treatment, 3–6–12 months | Significant improvement in symptoms and quality of life lasting for 3 to 6 months in the combination of thalassotherapy, exercise and patient education group |
Angioni (2019) | Chronic LBP due to axial OA | 66 (22 M/44 F) | Spa therapy including mud packs + Thermal hydrotherapy rehabilitation | Treatment as usual | VAS, SF-36, Roland and Morris Disability Questionnaires, Neck Disability Index, Serum proteins concentration | Baseline, 2 weeks, 12 weeks | Significant improvement in VAS pain, Roland Morris disability questionnaire and neck disability index at both time points. A significant increase (≥2.5 fold) after spa treatment of various serum proteins |
Fazaa (2014) | Knee OA | 240 (61 M/179 F) | Thermal treatment (underwater showers, massages-jet showers, pool rehabilitation) | Physical rehabilitation treatment + Electrotherapy | VAS, Lequesene AFI score, WOMAC | Baseline, end of the treatment, 12 months | Significant improvement in VAS pain at 12 months in thermal cure group, with superiority of physical treatment with regard to the function component of KOA at 6 months |
Fioravanti (2015) | Bilateral primary knee OA | 103 (29 M/74 F) | Mud packs + Mineral baths + Regular care routine (exercise, acetaminophen, NSAIDs, SYSADOA, intra-articular hyaluronic acid) | Regular care routine alone (exercise, acetaminophen, NSAIDs, SYSADOA, intra-articular hyaluronic acid) | VAS, WOMAC, SF-12, EQ-5D, EuroQol-VAS, drug consumption | Baseline, end of the treatment, 2 weeks, 3–6–9–12 months | Significant superiority in all the assessed parameters at the end of therapy up to 3 months of a cycle of mud-bath therapy in addition to usual treatment over usual treatment alone |
Forestier (2010) | Knee OA | 451 (237 M/214 F) | Spa therapy (mineral hydrojet, manual massages of the knee and thigh under mineral water, applications of mineral matured mud, supervised general mobilisation in a collective mineral water pool) + Home exercise program | Home exercise program | VAS, WOMAC, SF-36 | Baseline, 1 month, 3 and 6 months | Significant improvement in VAS for pain and WOMAC functional subscale at 6 months’ evaluation in the combined treatment group |
Forestier (2014) | Knee and GOA | 214 (89 M/25 F) | Spa treatment (general shower, mineral hydro-jet, manual massages, mineral-matured muds) + Supervised mobilisation in a mineral water pool | Three-day wellness package at the spa resort | WOMAC, VAS, SF-36 | Baseline, 3–6–9 months | Better clinically relevant improvement in pain and function in the group treated with spa therapy in combination with a home exercise in comparison with a home exercise programme alone in patients suffering from GOA at 6 months |
Gay (2010) | Knee OA | 123 (22 M/101 F) | Spa therapy (mineral hydrojet, thigh massage under mineral water, mineral-matured mud, supervised general mobilisation in a miner pool) + Self-management exercise sessions | Spa therapy alone | IPAQ score, WOMAC, VAS, HAD, ASES, KOFBeQ, EPPA, drug consumption | Baseline and 3 months | Efficacy of a 3-week spa therapy on improvement in physical activity level, with no complementary effect of a self-management exercise program. Significant improvement in the perception of physical activity motivation and barriers subscales, anxiety and depression in the combined treatment group at 3 months follow-up |
Kasapoğlu Aksoy (2017) | Hand OA | 63 (NA) | Peloid therapy + Home exercise program | Home exercise program alone | VAS, AUSCAN, HAQ, Hand grip strength, Pinch strength, Radiographs | Baseline, end of the treatment, 1 month | Significant reduction of pain and improvement in functional state, grip strength and quality of life up to 1 month in hand OA patients treated with peloid therapy + home exercise program |
Kovács (2016) | Hip OA | 41 (NA) | Balneotherapy + Home exercise program | Home exercise program alone | WOAMC, EuroQol-5D | Baseline, end of the treatment, 12 weeks | Statistically significant improvement at 12 weeks in favour of balneotherapy group in WOMAC pain, stiffness, function a total score |
Rat (2020) | Knee OA | 283 (93 M/190 F) | Spa therapy + 3 week Rehabilitation Program aimed to improve joint mobility, strength and proprioception and develop appropriate behavior and attitudes | Standard Spa therapy (mineral hydrojet sessions, manual massages under mineral water, applications of mineral-matured and supervised general mobilization in a collective mineral water pool) | VAS, WOMAC, PASS, SF-36, OAKHQOL, pROM | Baseline, 3 weeks, 6 weeks, 3 and 6 months | The non-inferiority of spa-rehab versus standard spa therapy for the main outcome criteria at 6 months could not be demonstrated. Spa-rehab therapy was not inferior to standard spa therapy for the MCII criteria at 3 months or the PASS at 3 and 6 months. Therefore, spa-rehab therapy may be an acceptable alternative to standard spa therapy for patients with symptomatic knee OA |
Yurtkuran (2006) | Knee OA | 56 (3 M/53 F) | Balneotherapy + Home based exercise program | Heated tap water therapy + Home based exercise program | VAS, Fifty-foot walking time, Active knee flexion, TS, Quadriceps muscle strength, WOMAC, NHP | Baseline, end of the treatment, 12 weeks | Significant improvement in all the variables except TS and muscle strengh at 2 and 12 weeks in the heated tap water group. The improvement observed in the BT group was superior to tap water group for pain VAS, TS, and psychological and emotional variables at the 2nd and 12th week |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tognolo, L.; Coraci, D.; Fioravanti, A.; Tenti, S.; Scanu, A.; Magro, G.; Maccarone, M.C.; Masiero, S. Clinical Impact of Balneotherapy and Therapeutic Exercise in Rheumatic Diseases: A Lexical Analysis and Scoping Review. Appl. Sci. 2022, 12, 7379. https://doi.org/10.3390/app12157379
Tognolo L, Coraci D, Fioravanti A, Tenti S, Scanu A, Magro G, Maccarone MC, Masiero S. Clinical Impact of Balneotherapy and Therapeutic Exercise in Rheumatic Diseases: A Lexical Analysis and Scoping Review. Applied Sciences. 2022; 12(15):7379. https://doi.org/10.3390/app12157379
Chicago/Turabian StyleTognolo, Lucrezia, Daniele Coraci, Antonella Fioravanti, Sara Tenti, Anna Scanu, Giacomo Magro, Maria Chiara Maccarone, and Stefano Masiero. 2022. "Clinical Impact of Balneotherapy and Therapeutic Exercise in Rheumatic Diseases: A Lexical Analysis and Scoping Review" Applied Sciences 12, no. 15: 7379. https://doi.org/10.3390/app12157379
APA StyleTognolo, L., Coraci, D., Fioravanti, A., Tenti, S., Scanu, A., Magro, G., Maccarone, M. C., & Masiero, S. (2022). Clinical Impact of Balneotherapy and Therapeutic Exercise in Rheumatic Diseases: A Lexical Analysis and Scoping Review. Applied Sciences, 12(15), 7379. https://doi.org/10.3390/app12157379