Prefermentative Grape Microwave Treatment as a Tool for Increasing Red Wine Phenolic Content and Reduce Maceration Time
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagent and Standards
2.2. Microwave Treatment and Microvinification
2.3. Analysis
2.3.1. Spectrophotometric Parameters
2.3.2. Determination of Tannins by HPLC
2.3.3. Determination of Phenolic Compounds by HPLC
2.4. Determination of Phenolic Compounds by SEC
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sacchi, K.L.; Bisson, L.F.; Adams, D.A. A review of the effect of winemaking techniques on phenolic extraction in red wines. Am. J. Enol. Vitic. 2005, 56, 197–206. [Google Scholar]
- Bautista-Ortín, A.B.; Fernández-Fernández, J.I.; López-Roca, J.M.; Gómez-Plaza, E. The effects of enological practices in anthocyanins, phenolic compounds and wine colour and their dependence on grape characteristics. J. Food Compos. Anal. 2007, 20, 546–552. [Google Scholar] [CrossRef]
- Puértolas, E.; Hernández-Orte, P.; Saldaña, G.; Álvarez, I.; Raso, J. Improvement of winemaking process using pulsed electric fields at pilot-plant scale. Evolution of chromatic parameters and phenolic content of Cabernet Sauvignon red wines. Food Res. Int. 2010, 43, 761–766. [Google Scholar] [CrossRef]
- Maza, M.A.; Martínez, J.M.; Delso, C.; Camargo, A.; Raso, J.; Álvarez, I. PEF-dependency on polyphenol extraction during maceration/fermentation of Grenache grapes. Inn. Food Sci. Emerg. Technol. 2020, 60, 102303. [Google Scholar] [CrossRef]
- Pérez-Porras, P.; Bautista-Ortín, A.B.; Jurado, R.; Gómez-Plaza, E. Using highpower ultrasounds in red winemaking: Effect of operating conditions on wine physicochemical and chromatic characteristics. LWT 2021, 138, 110645. [Google Scholar] [CrossRef]
- Oliver Simancas, R.; Díaz-Maroto, M.C.; Alañón Pardo, M.E.; Pérez Porras, P.; Bautista-Ortín, A.B.; Gómez-Plaza, E.; Pérez-Coello, M.S. Effect of power ultrasound treatment on free and glycosidically-bound volatile compounds and the sensorial profile of red wines. Molecules 2021, 26, 1193. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B.; Pérez-Porras, P.; Bautista-Ortín, A.B.; Gómez-Plaza, E. Ultrasound treatment of crushed grapes: Effect on the must and red wine polysaccharide composition. Food Chem. 2021, 356, 129669. [Google Scholar] [CrossRef]
- Gao, L.; Girard, B.; Mazza, G.; Reynolds, A.G. Changes in anthocyanins and color characteristics of Pinot noir wines during different vinification processes. J. Agric. Food Chem. 1997, 45, 2003–2008. [Google Scholar] [CrossRef]
- Girard, B.; Kopp, T.P.; Reynolds, A.G.; Cliff, M. Influence of vinification treatments on aroma constituents and sensory descriptors of Pinot noir wines. Am. J. Enol. Vitic. 1997, 48, 198–206. [Google Scholar]
- Guzik, P.; Kulawik, P.; Zając, M.; Migdał, W. Microwave applications in the food industry: An overview of recent developments. Crit. Rev. Food Sci. Nutr. 2021, 10, 1–20. [Google Scholar] [CrossRef]
- Lik Hii, C.; Pheng Ong, S.; Ying Yap, J.; Putranto, A.; Mangindaan, D. Hybrid drying of food and bioproducts: A review. Dry. Technol. 2021, 39, 1554–1576. [Google Scholar]
- Barba, F.J.; Brianceau, S.; Turk, M.; Boussetta, N.; Vorobiev, E. Effect of Alternative Physical Treatments (Ultrasounds, Pulsed Electric Fields, and High-Voltage Electrical Discharges) on Selective Recovery of Bio-compounds from Fermented Grape Pomace. Food Bioproc. Technol. 2015, 8, 1139–1148. [Google Scholar] [CrossRef]
- Miljić, U.; Puškaš, V.; Vučurović, V. Investigation of technological approaches for reduction of methanol formation in plum wines. J. Inst. Brew. 2016, 1224, 635–643. [Google Scholar] [CrossRef]
- Casassa, L.; Sari, S.; Bolcato, E.; Fanzone, M. Microwave-Assisted Extraction Applied to Merlot Grapes with Contrasting Maturity Levels: Effects on Phenolic Chemistry and Wine Color. Fermentation 2019, 5, 15. [Google Scholar] [CrossRef]
- Carew, A.L.; Gill, W.; Close, D.C.; Dambergs, R.G. Microwave Maceration with Early Pressing Improves Phenolics and Fermentation Kinetics in Pinot noir. Am. J. Enol. Vitic. 2014, 65, 401–406. [Google Scholar] [CrossRef]
- Carew, A.L.; Sparrow, A.M.; Curtin, C.D.; Close, D.C.; Dambergs, R.G. Microwave Maceration of Pinot Noir Grape Must: Sanitation and Extraction Effects and Wine Phenolics Outcomes. Food Bioproc. Technol. 2013, 7, 954–963. [Google Scholar] [CrossRef]
- Carew, A.L.; Close, D.C.; Dambergs, R.G. Yeast strain affects phenolic concentration in Pinot noir wines made by microwave maceration with early pressing. J. Appl. Microbiol. 2015, 118, 1385–1394. [Google Scholar] [CrossRef]
- Casassa, L.F.; Huff, R.; Miller, E. Effect of Stem Additions and Microwave Extraction of Musts and Stems on Syrah, Merlot, and Cabernet Sauvignon Wines. In Proceedings of the 68th American Society for Enology and Viticulture National Conference, Seattle, WA, USA, 26–29 June 2017. [Google Scholar]
- Glories, Y. La couleur des vins rouges. lre Partie. Les équilibres des anthocyanes et des tanins. OENO One 1984, 18, 253–271. [Google Scholar] [CrossRef]
- Ho, P.; Da Silva, M.; Hogg, T.A. Changes in colour and phenolic composition during the early stages of maturation of port in wood, stainless steel and glass. J. Sci. Food Agric. 2001, 81, 1269–1280. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Pontallier, P.; Glories, Y. Some interpretations of colour changes in young red wines during their conservation. J. Sci. Food Agric. 1983, 34, 505–516. [Google Scholar] [CrossRef]
- Smith, P.A. Precipitation of tannin with methyl cellulose allows tannin quantification in grape and wine samples. Tech. Rev. AWRI 2005, 158, 3–7. [Google Scholar]
- Busse-Valverde, N.; Gómez-Plaza, E.; López-Roca, J.M.; Gil-Muñoz, R.; Fernández-Fernández, J.I.; Bautista-Ortín, A.B. Effect of different enological practices on skin and seed proanthocyanidins in three varietal wines. J. Agric. Food Chem. 2010, 58, 11333–11339. [Google Scholar] [CrossRef]
- Kennedy, J.A.; Taylor, A.W. Analysis of proanthocyanidins by high-performance gel permeation chromatography. J. Chromatogr. A 2003, 995, 99–107. [Google Scholar] [CrossRef]
- Castro-López, L.; Gómez-Plaza, E.; Ortega-Regules, A.; Lozada, D.; Bautista-Ortín, A.B. Role of cell wall deconstructing enzymes in the proanthocyanidin–cell wall adsorption–desorption phenomena. Food Chem. 2016, 196, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Wojdyło, A.; Samoticha, J.; Chmielewska, J. Effect of different pre-treatment maceration techniques on the content of phenolic compounds and color of Dornfelder wines elaborated in cold climate. Food Chem. 2021, 339, 127888. [Google Scholar] [CrossRef] [PubMed]
- Muñoz García, R.; Oliver Simancas, R.; Díaz-Maroto, M.C.; Alañón Pardo, M.E.; Pérez-Coello, M.S. Effect of Microwave Maceration and SO2 Free Vinification on Volatile Composition of Red Wines. Foods 2021, 10, 1164. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Porras, P.; Bautista-Ortín, A.B.; Jurado, R.; Gómez-Plaza, E. Combining high-power ultrasound and enological enzymes during winemaking to improve the chromatic characteristics of red wine. LWT 2022, 156, 113032. [Google Scholar] [CrossRef]
- Paranjpe, S.S.; Ferruzzi, M.; Morgan, M.T. Effect of a flash vacuum expansion process on grape juice yield and quality. LWT 2012, 48, 147–155. [Google Scholar] [CrossRef]
- Marquez, A.; Serratosa, M.P.; Merida, J. Pyranoanthocyanin Derived Pigments in Wine: Structure and Formation during Winemaking. J. Chem. 2013, 2013, 713028. [Google Scholar] [CrossRef]
- Garrido, J.; Borges, F. Wine and grape polyphenols—A chemical perspective. Food Res. Int. 2013, 54, 1844–1858. [Google Scholar] [CrossRef]
- Somers, T.C.; Vérette, E.; Pocock, K.F. Hydroxycinnamate esters of Vitis vinifera: Changes during white vinification, and effects of exogenous enzymic hydrolysis. J. Sci. Food Agric. 1987, 40, 67–78. [Google Scholar] [CrossRef]
- Revilla, I.; Gonzalez-SanJose, M.L. Compositional changes during the storage of red wines treated with pectolytic enzymes: Low molecular-weight phenols and flavan-3-ol derivative levels. Food Chem. 2003, 80, 205–214. [Google Scholar] [CrossRef]
- Zou, H.; Kilmartin, P.A.; Inglis, M.J.; Frost, A. Extraction of phenolic compounds during vinification of Pinot Noir wine examined by HPLC and cyclic voltammetry. Aust. J. Grape Wine Res. 2002, 8, 163–174. [Google Scholar] [CrossRef]
- Bloomfield, D.G.; Heatherbell, D.A.; Nikfardjam, M.P. Effect of p-coumaric acid on the color in red wine. Mitt. Klost. 2003, 53, 195–198. [Google Scholar]
- He, F.; Liang, N.N.; Mu, L.; Pan, Q.H.; Wang, J.; Reeves, M.J.; Duan, C.Q. Anthocyanins and their variation in red wines II. Anthocyanin derived pigments and their color evolution. Molecules 2012, 17, 1483–1519. [Google Scholar] [CrossRef]
- Kontoudakis, N.; González, E.; Gil, M.; Esteruelas, M.; Fort, F.; Canals, J.M.; Zamora, F. Influence of Wine pH on Changes in Color and Polyphenol Composition Induced by Micro-oxygenation. J. Agric. Food Chem. 2011, 59, 1974–1984. [Google Scholar] [CrossRef]
- Saucier, C.; Lopes, P.; Mirabel, M.; Guerra, C.; Glories, Y. Tannin–anthocyanin interactions: Influence on wine color. In Red Wine Color; Revealing the Mysteries; ACS Symposium Series; Kennedy, J.A., Waterhouse, A., Eds.; American Chemical Society: Washington, DC, USA, 2004; Volume 886, pp. 265–274. [Google Scholar]
- Timberlake, C.F.; Bridle, P. Interactions between anthocyanins, phenolic compounds, and acetaldehyde and their significance in red wines. Am. J. Enol. Vitic. 1996, 27, 97–105. [Google Scholar]
CI | TPI | TA (mg/L) | PA (mg/L) | MCPT (mg/L) | |
---|---|---|---|---|---|
C-72h | 13.97 ± 0.76 a | 39.55 ± 1.93 a | 325.81 ± 17.89 a | 157.25 ± 10.88 a | 1046.70 ± 98.26 a |
MW-72h | 16.16 ± 0.29 b | 45.22 ± 0.20 b | 370.99 ± 9.90 b | 184.58 ± 7.43 ab | 1476.86 ± 48.05 b |
C-7d | 17.18 ± 0.43 b | 47.04 ± 1.04 b | 396.82 ± 8.45 b | 161.66 ± 8.42 a | 1264.72 ± 121.56 ab |
MW-7d | 19.29 ± 0.43 c | 61.12 ± 2.55 c | 433.43 ± 12.08 c | 193.65 ± 17.27 b | 2088.76 ± 185.98 c |
TTp (mg/L) | mDP | %EGC | %Gal | |
---|---|---|---|---|
C-72h | 474.69 ± 61.49 a | 6.02 ± 0.23 bc | 30.66 ± 0.61 c | 4.38 ± 0.24 a |
MW-72h | 606.24 ± 18.38 b | 6.19 ± 0.37 c | 30.06 ± 0.80 bc | 4.45 ± 0.14 ab |
C-7d | 710.17 ± 67.01 b | 5.45 ± 0.07 b | 27.95 ± 1.07 b | 4.19 ± 0.16 a |
MW-7d | 1018.34 ± 32.75 c | 4.56 ± 0.24 a | 22.11 ± 0.74 a | 4.89 ± 0.22 b |
Phenolic Compounds | C-72h | MW-72h | C-7d | MW-7d |
---|---|---|---|---|
Free anthocyanins | ||||
Delphinidin-3-glucoside | 2.80 ± 0.10 a | 3.14 ± 0.10 a | 4.05 ± 0.43 b | 4.18 ± 0.26 b |
Cianidin-3-glucoside | 0.11 ± 0.02 a | 0.16 ± 0.01 b | 0.10 ± 0.02 a | 0.18 ± 0.01 b |
Petunidin-3-glucoside | 3.20 ± 0.06 a | 3.59 ± 0.05 a | 4.71 ± 0.54 b | 4.89 ± 0.41 b |
Peonidin-3-glucoside | 0.82 ± 0.13 a | 0.75 ± 0.05 a | 1.44 ± 0.18 b | 1.61 ± 0.29 b |
Malvidin-3-glucoside | 31.76 ± 0.44 a | 32.03 ± 3.12 a | 43.16 ± 3.47 b | 45.47 ± 3.89 b |
Delphinidin-(6-acetyl)-3-glucoside | 0.99 ± 0.06 a | 0.97 ± 0.12 a | 1.43 ± 0.25 b | 1.97 ± 0.04 c |
Peonidin-(6-acetyl)-3-glucoside | 0.86 ± 0.07 ab | 0.56 ± 0.06 a | 1.00 ± 0.15 b | 1.44 ± 0.17 c |
Malvidin-(6-acetyl)-3-glucoside | 16.09 ± 0.39 a | 16.58 ± 1.86 a | 21.68 ± 2.51 b | 25.54 ± 1.54 b |
Peonidin-(6-coumaroyl)-3-glucoside | 0.13 ± 0.06 a | 0.14 ± 0.05 a | 0.18 ± 0.06 a | 0.33 ± 0.01 b |
Malvidin-(6-coumaroyl)-3-glucoside | 3.01 ± 0.15 a | 3.28 ± 0.12 ab | 4.35 ± 0.78 b | 4.27 ± 0.59 ab |
Σtotal | 59.76 ± 1.39 a | 61.20 ± 5.19 a | 82.09 ± 8.38 b | 89.90 ± 7.13 b |
A-type vitisins | ||||
Delphinidin-3-glucoside-pyruvic acid | 0.10 ± 0.03 b | 0.15 ± 0.01 c | 0.00 ± 0.00 a | 0.09 ± 0.02 b |
Cianidin-3-glucoside-pyruvic acid | 0.24 ± 0.04 b | 0.32 ± 0.00 c | 0.08 ± 0.03 a | 0.18 ± 0.02 b |
Malvidin-3-glucoside-pyruvic acid (vitisin A) | 5.39 ± 0.17 c | 5.82 ± 0.08d | 3.22 ± 0.06 a | 3.98 ± 0.05 b |
Malvidin-(6-acetyl)-3-glucoside-pyruvic acid (acetylvitisin A) | 3.77 ± 0.17 c | 4.25 ± 0.01 d | 2.40 ± 0.07 a | 3.05 ± 0.03 b |
Malvidin-(6-coumaroyl)-3-glucoside pyruvic acid | 0.77 ± 0.04 b | 0.87 ± 0.02 b | 0.36 ± 0.07 a | 0.46 ± 0.01 a |
Delphinidin-(6-acetyl)-3-glucoside-pyruvic acid | 0.00 ± 0.00 a | 0.04 ± 0.01 a | 0.07 ± 0.04 a | 0.39 ± 0.04 b |
Σtotal | 10.28 ± 0.45 c | 11.46 ± 0.06 d | 6.13 ± 0.26 a | 8.16 ± 0.09 b |
B-type vitisins | ||||
Malvidin-3-glucoside-acetaldehyde (vitisin B) | 1.39 ± 0.02 ab | 1.47 ± 0.04 b | 1.30 ± 0.36 ab | 0.98 ± 0.01 a |
Malvidin-(6-acetyl)-3-glucoside-acetaldehyde (acetylvitisin B) | 1.25 ± 0.04 a | 1.32 ± 0.08 a | 1.06 ± 0.32 a | 0.96 ± 0.06 a |
Malvidin-(6-coumaroyl)-3-glucoside acetaldehyde | 0.46 ± 0.09 a | 0.54 ± 0.05 ab | 0.70 ± 0.14 b | 0.75 ± 0.03 b |
Σtotal | 3.10 ± 0.10 a | 3.33 ± 0.13 a | 3.06 ± 0.82 a | 2.69 ± 0.10 a |
Hydroxyphenyl pyranoanthocyanins | ||||
Peonidin-3-glucoside-4-vinylphenol | 0.15 ± 0.03 a | 0.24 ± 0.02 b | 0.21 ± 0.02 b | 0.35 ± 0.01 c |
Flavanol pyranoanthocyanins | ||||
Malvidin-(6-acetyl)-3-glucoside-4-vinyl-(epi)catechin | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.25 ± 0.01 b |
Malvidin-(-6-acetyl)-3-glucoside-4-vinyl-(epi)catechin | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.11 ± 0.00 b |
Σtotal | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.36 ± 0.01 b |
Ethylidene anthocyanin-flavanol adducts | ||||
Malvidin-3-glucoside-8-ethyl-(epi)catechin | 0.27 ± 0.13 a | 0.46 ± 0.01 a | 0.52 ± 0.16 a | 1.22 ± 0.07 b |
Malvidin-3-glucoside-8-ethyl-(epi)catechin | 0.46 ± 0.11 a | 0.68 ± 0.04 ab | 0.99 ± 0.33 b | 1.84 ± 0.14 c |
Malvidin-3-glucoside-8-ethyl-(epi)catechin | 0.35 ± 0.05 a | 0.41 ± 0.03 a | 0.56 ± 0.17 a | 0.96 ± 0.06 b |
Malvidin-3-glucoside-8-ethyl-(epi)catechin | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.07 ± 0.05 b | 0.25 ± 0.02 c |
Malvidin-3-(6-acetyl)-3-glucoside-8-ethyl-(epi)catechin | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.26 ± 0.01 b |
Σtotal | 1.08 ± 0.29 a | 1.56 ± 0.08 ab | 2.15 ± 0.68 b | 4.54 ± 0.30 c |
Flavonols | ||||
Myricetin-3-glucuronide | 2.49 ± 0.12 a | 2.73 ± 0.11 a | 2.71 ± 0.02 a | 3.42 ± 0.11 b |
Myricetin-3-galactoside | 1.46 ± 0.07 a | 1.55 ± 0.05 a | 1.48 ± 0.04 a | 1.73 ± 0.05 b |
Myricetin-3-glucoside | 11.77 ± 0.64 a | 12.68 ± 0.44 a | 12.75 ± 0.60 a | 15.51 ± 0.79 b |
Quercetin-3-galactoside | 2.33 ± 0.04 a | 2.58 ± 0.08 b | 2.76 ± 0.10 b | 3.12 ± 0.12 c |
Quercetin-3-glucuronide | 11.05 ± 0.17 a | 12.61 ± 0.63 b | 13.61 ± 0.39 b | 16.63 ± 0.68 c |
Quercetin-3-glucoside | 10.25 ± 0.17 a | 11.80 ± 0.31 b | 12.94 ± 0.37 b | 15.72 ± 0.81 c |
Laricitrin-3-glucoside | 3.36 ± 0.11 a | 3.69 ± 0.07 b | 3.89 ± 0.04 b | 4.67 ± 0.17 c |
Kaempherol-3-glucoside | 1.57 ± 0.03 a | 1.77 ± 0.03 a | 2.56 ± 0.33 b | 2.53 ± 0.16 b |
Isorhamnetin-3-glucoside | 2.21 ± 0.09 a | 2.50 ± 0.06 b | 2.70 ± 0.03 b | 3.18 ± 0.11 c |
Syringetin-3-glucoside | 3.46 ± 0.12 a | 3.83 ± 0.07 b | 4.03 ± 0.04 b | 4.92 ± 0.15 c |
Σtotal | 49.95 ± 1.41 a | 55.74 ± 1.81 b | 59.44 ± 1.77 b | 71.42 ± 3.11 c |
Phenolic acids | ||||
Gallic acid | 5.74 ± 0.71 a | 7.48 ± 0.32 b | 8.68 ± 0.19 c | 10.89 ± 0.12 d |
Caftaric acid | 8.25 ± 0.53 ab | 8.70 ± 0.44 b | 10.42 ± 0.02 c | 7.44 ± 0.14 a |
Coutaric acid | 1.92 ± 0.09 b | 1.94 ± 0.12 b | 2.35 ± 0.02 c | 1.56 ± 0.00 a |
Caffeic acid | 1.46 ± 0.05 a | 1.81 ± 0.00 b | 1.85 ± 0.03 b | 1.80 ± 0.15 b |
P-cuomaric acid | 0.31 ± 0.00 a | 0.32 ± 0.00 a | 0.37 ± 0.00 b | 0.53 ± 0.02 c |
Σtotal | 17.68 ± 1.23 a | 20.25 ± 0.57 b | 23.67 ± 0.11 c | 22.22 ± 0.39 c |
Flavanols | ||||
Catechin | 11.13 ± 1.78 a | 21.20 ± 0.78 c | 16.22 ± 0.36 b | 42.77 ± 0.89 d |
Epicatechin | 29.32 ± 1.63 a | 37.54 ± 0.63 a | 37.55 ± 3.44 a | 52.02 ± 6.57 b |
Σtotal | 40.45 ± 3.39 a | 58.74 ± 0.16 b | 53.77 ± 3.55 b | 94.79 ± 7.47 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Porras, P.; Gómez-Plaza, E.; Muñoz García, R.; Díaz-Maroto, M.C.; Moreno-Olivares, J.D.; Bautista-Ortín, A.B. Prefermentative Grape Microwave Treatment as a Tool for Increasing Red Wine Phenolic Content and Reduce Maceration Time. Appl. Sci. 2022, 12, 8164. https://doi.org/10.3390/app12168164
Pérez-Porras P, Gómez-Plaza E, Muñoz García R, Díaz-Maroto MC, Moreno-Olivares JD, Bautista-Ortín AB. Prefermentative Grape Microwave Treatment as a Tool for Increasing Red Wine Phenolic Content and Reduce Maceration Time. Applied Sciences. 2022; 12(16):8164. https://doi.org/10.3390/app12168164
Chicago/Turabian StylePérez-Porras, Paula, Encarna Gómez-Plaza, Raquel Muñoz García, María Consuelo Díaz-Maroto, Juan Daniel Moreno-Olivares, and Ana Belén Bautista-Ortín. 2022. "Prefermentative Grape Microwave Treatment as a Tool for Increasing Red Wine Phenolic Content and Reduce Maceration Time" Applied Sciences 12, no. 16: 8164. https://doi.org/10.3390/app12168164
APA StylePérez-Porras, P., Gómez-Plaza, E., Muñoz García, R., Díaz-Maroto, M. C., Moreno-Olivares, J. D., & Bautista-Ortín, A. B. (2022). Prefermentative Grape Microwave Treatment as a Tool for Increasing Red Wine Phenolic Content and Reduce Maceration Time. Applied Sciences, 12(16), 8164. https://doi.org/10.3390/app12168164