Natural Blending as a Novel Technology for the Production Process of Aged Wine Spirits: Potential Impact on Their Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Sampling of WSs
2.2. Chemicals
2.3. Basic Chemical Characteristics
2.4. Total Phenolic Index
2.5. Low Molecular Weight Compounds
2.6. Chromatic Characteristics
2.7. Sensory Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Effect of Blending on the Basic Chemical Characteristics of WSs
3.2. Effect of Blending on the Total Phenolic Index and Low Molecular Weight Compounds Contents of WSs
3.3. Effect of Blending on the Chromatic Characteristics of WSs
3.4. Global Assessment of WSs’ Physicochemical Characteristics
3.5. Effect of Blending on the Sensory Profile of WSs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsakiris, A.; Kallithrakab, S.; Kourkoutasc, Y. Grape brandy production, composition and sensory evaluation. J. Sci. Food Agric. 2014, 94, 404–414. [Google Scholar] [CrossRef]
- Reg. EU nº 2019/787 of the European Parliament and of the Council of 17 April 2019 on the Definition, Description, Presentation and Labelling of Spirit Drinks, the Use of the Names of Spirit Drinks in the Presentation and Labelling of other Foodstuffs, the Protection of Geographical Indications for Spirit Drinks, the Use of Ethyl Alcohol and Distillates of Agricultural Origin in Alcoholic Beverages, and Repealing Regulation (EC) No 110/2008; OJEU. L130European Union. 2019, pp. 1–54. Available online: https://eur-lex.europa.eu/eli/reg/2019/787/2022-08-15 (accessed on 3 July 2022).
- Lurton, L.; Ferrari, G.; Snakkers, G. Cognac: Production and aromatic characteristics. In Alcoholic Beverages. Sensory Evaluation and Consumer Research; Piggott, J.R., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2012; pp. 242–266. [Google Scholar]
- Canas, S. Phenolic composition and related properties of aged wine spirits: Influence of barrel characteristics. A review. Beverages 2017, 3, 55. [Google Scholar] [CrossRef] [Green Version]
- Canas, S.; Caldeira, I.; Belchior, A.P.; Spranger, M.I.; Clímaco, M.C.; Bruno-de-Sousa, R. Chestnut Wooden Barrels for the Ageing of Wine Spirits. 2018. Available online: http://www.oiv.int/en/technicalstandards-and-documents/collective-expertise/spirit-beverages (accessed on 5 July 2022).
- García-Moreno, M.V.; Sánchez-Guillén, M.M.; Ruiz de Mier, M.; Delgado-González, M.J.; Rodríguez-Dodero, M.C.; García-Barroso, C.; Guillén-Sánchez, D.A. Use of alternative wood for the ageing of Brandy de Jerez. Foods 2020, 9, 250. [Google Scholar] [CrossRef] [Green Version]
- Breniaux, M.; Renault, P.; Meunier, F.; Ghidossi, R. Study of high power ultrasound for oak wood barrel regeneration: Impact of wood properties and sanitation effect. Beverages 2019, 5, 10. [Google Scholar] [CrossRef] [Green Version]
- Purvis, B.; Mao, Y.; Robinson, D. Three pillars of sustainability: In search of conceptual origins. Sustain. Sci. 2019, 14, 681–695. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Zeng, X.A.; Sun, D.W.; Yu, S.J.; Yang, M.F.; Ma, S. Effect of electric field treatments on brandy aging in oak barrels. Food Bioprocess. Technol. 2013, 6, 1635–1643. [Google Scholar] [CrossRef]
- Schwarz, M.; Rodríguez-Dodero, M.C.; Jurado, M.S.; Puertas, B.G.; Barroso, C.; Guillén, D.A. Analytical characterization and sensory analysis of distillates of different varieties of grapes aged by an accelerated method. Foods 2020, 9, 277. [Google Scholar] [CrossRef] [Green Version]
- van Jaarsveld, F.P.; Hattingh, S.; Minnaar, P. Rapid induction of ageing character in brandy products—Part I. Effects of extraction media and preparation conditions. S. Afr. J. Enol. Vitic. 2009, 30, 1–15. [Google Scholar] [CrossRef] [Green Version]
- van Jaarsveld, F.P.; Hattingh, S.; Minnaar, P. Rapid induction of ageing character in brandy products—Part II. Influence of type of oak. S. Afr. J. Enol. Vitic. 2009, 30, 16–23. [Google Scholar] [CrossRef] [Green Version]
- van Jaarsveld, F.P.; Hattingh, S.; Minnaar, P. Rapid induction of ageing character in brandy products—Part III. Influence of toasting. S. Afr. J. Enol. Vitic. 2009, 30, 24–37. [Google Scholar] [CrossRef]
- Canas, S.; Caldeira, I.; Anjos, O.; Belchior, A.P. Phenolic profile and colour acquired by the wine spirit in the beginning of ageing: Alternative technology using micro-oxygenation vs traditional technology. LWT-Food. Sci. Technol. 2019, 111, 260–269. [Google Scholar] [CrossRef]
- Anjos, O.; Caldeira, I.; Roque, R.; Pedro, S.I.; Lourenço, S.; Canas, S. Screening of different ageing technologies of wine spirit by application of near-infrared (NIR) spectroscopy and volatile quantification. Processes 2020, 8, 736. [Google Scholar] [CrossRef]
- Canas, S.; Danalache, F.; Anjos, O.; Fernandes, T.A.; Caldeira, I.; Santos, N.; Fargeton, L.; Boissier, B.; Catarino, S. Behaviour of low molecular weight compounds, iron and copper of wine spirit aged with chestnut staves under different levels of micro-oxygenation. Molecules 2020, 25, 5266. [Google Scholar] [CrossRef]
- Granja-Soares, J.; Roque, R.; Cabrita, M.J.; Anjos, O.; Belchior, A.P.; Caldeira, I.; Canas, S. Effect of innovative technology using staves and micro-oxygenation on the sensory and odorant profile of aged wine spirit. Food Chem. 2020, 333, 127450. [Google Scholar] [CrossRef]
- Caldeira, I.; Vitória, C.; Anjos, O.; Fernandes, T.A.; Gallardo, E.; Fargeton, L.; Boissier, B.; Catarino, S.; Canas, S. Wine spirit ageing with chestnut staves under different micro-oxygenation strategies: Effects on the volatile compounds and sensory profile. Appl. Sci. 2021, 11, 3991. [Google Scholar] [CrossRef]
- Canas, S.; Anjos, O.; Caldeira, I.; Fernandes, T.A.; Santos, N.; Lourenço, S.; Granja-Soares, J.; Fargeton, L.; Boissier, B.; Catarino, S. Micro-oxygenation level as a key to explain the variation in the colour and chemical composition of wine spirits aged with chestnut wood staves. LWT-Food Sci. Technol. 2022, 154, 11265. [Google Scholar] [CrossRef]
- Anjos, O.; Caldeira, I.; Pedro, S.I.; Canas, S. FT-Raman methodology applied to identify different ageing stages of wine spirits. LWT-Food Sci Technol. 2020, 134, 110179. [Google Scholar] [CrossRef]
- Onofre, J. European wine policy framework-The path toward sustainability. In Improving Sustainable Viticulture and Winemaking Practices; Costa, J.M., Catarino, S., Escalona, J.M., Comuzzo, P., Eds.; Elsevier: London, UK, 2022; pp. 485–499. [Google Scholar]
- Mitry, D.J.; Smith, D.E. Convergence in global markets and consumer behaviour. Int. J. Consum. Stud. 2009, 33, 316–321. [Google Scholar] [CrossRef]
- Whelan, T.; Kronthal-Sacco, R. Research: Actually, Consumers Do Buy Sustainable Product. 2019. Available online: https://hbr.org/2019/06/research-actually-consumers-do-buy-sustainable-products (accessed on 25 June 2022).
- Krstić, J.D.; Kostić-Stanković, M.M.; Veljović, S.P. Traditional and innovative aging technologies of distilled beverages: The influence on the quality and consumer preferences of aged spirit drinks. J. Agric. Sci. 2021, 66, 209–230. [Google Scholar] [CrossRef]
- Cantagrel, R.; Mazerolles, G.; Vidal, J.-P.; Lablanquie, O.; Boulesteix, J.-M. L’assemblage: Une etape importante dans le processus d’elaboration des Cognacs. In Les Eaux-de-Vie Traditionelles D’origine Viticole; Bertrand, A., Ed.; Lavoisier Tec & Doc: Paris, France, 1991; pp. 243–253. [Google Scholar]
- Belchior, A.P.; Mateus, A.M.; Caldeira, I. Effects des assemblages en eaux-de-vie de “Lourinhã”. Ciência Téc. Vitiv. 2002, 17, 53–59. [Google Scholar]
- Russell, I. Whisky. Technology, Production and Marketing; Elsevier: Amsterdam, The Netherlands; Academic Press: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Roullier-Gall, C.; Signoret, J.; Hemmler, D.; Witting, M.A.; Kanawati, B.; Schäfer, B.; Gougeon, R.D.; Schmitt-Koppli, P. Usage of FT-ICR-MS metabolomics for characterizing the chemical signatures of barrel-aged whisky. Front. Chem. 2018, 6, 29. [Google Scholar] [CrossRef]
- Stupak, M.; Goodall, I.; Tomaniova, M.; Pulkrabova, J.; Hajslova, J. A novel approach to assess the quality and authenticity of Scotch. Anal. Chim. Acta 2018, 1042, 60–70. [Google Scholar] [CrossRef]
- Nicol, D.A. Rum. In Fermented Beverage Production, 2nd ed.; Lea, A.G.H., Piggott, J.R., Eds.; Springer Science+Business Media: New York, NY, USA, 2003; pp. 263–287. [Google Scholar]
- Souza, P.P.; Augusti, D.V.; Catharino, R.R.; Siebald, H.G.L.; Eberlin, M.N.; Augusti, R. Differentiation of rum and Brazilian artisan cachaça via electrospray ionization mass spectrometry fingerprinting. J. Mass Spectrom. 2007, 42, 1294–1299. [Google Scholar] [CrossRef] [PubMed]
- Acuña, L.; Gonzalez, D.; de la Fuente, J.; Moya, L. Influence of toasting treatment on permeability of six wood species for enological use. Holzforschung 2014, 68, 447–454. [Google Scholar] [CrossRef]
- Martínez-Gil, A.; del Álamo-Sanza, M.; Sánchez-Gómez, R.; Nevares, I. Different woods in cooperage for oenology: A review. Beverages 2018, 4, 94. [Google Scholar] [CrossRef] [Green Version]
- Canas, S.; Caldeira, I.; Anjos, O.; Lino, J.; Soares, A.; Belchior, A.P. Physicochemical and sensory evaluation of wine brandies aged using oak and chestnut wood simultaneously in wooden barrels and in stainless steel tanks with staves. Intern. J. Food Sci. Technol. 2016, 51, 2537–2545. [Google Scholar] [CrossRef]
- OIV. Compendium of International Methods of Analysis of Spirituous Beverages of Vitivinicultural Origin; International Organisation of Vine and Wine: Paris, France, 2019.
- Belchior, A.P.; Caldeira, I.; Costa, S.; Lopes, C.; Tralhão, G.; Ferrão, A.F.M.; Mateus, A.M.; Carvalho, E. Evolução das características fisico-químicas e organolépticas de aguardentes Lourinhã ao longo de cinco anos de envelhecimento em madeiras de carvalho e de castanheiro. Ciência Téc. Vitiv. 2001, 16, 81–94. [Google Scholar]
- Canas, S.; Belchior, A.P.; Spranger, M.I.; Bruno de Sousa, R. High-performance liquid chromatography method for analysis of phenolic acids, phenolic aldehydes and furanic derivatives in brandies. Development and validation. J. Sep. Sci. 2003, 26, 496–502. [Google Scholar] [CrossRef]
- Choudhury, A.K.R. Colour difference assessment. In Principles of Colour Appearance and Measurement; Choudhury, A.K.R., Ed.; Woodhead Publishing Limited—The Textile Institute: Cambridge, UK, 2015; Volume 1, pp. 55–116. [Google Scholar]
- Delgado-González, M.J.; García-Moreno, M.V.; Sánchez-Guillén, M.M.; García-Barroso, C.; Guillén-Sánchez, D. A Colour evolution kinetics study of spirits in their ageing process in wood casks. Food Control 2021, 119, 107468. [Google Scholar] [CrossRef]
- Chollet, S.; Valentin, D.; Abdi, H. Free Sorting Task. In Novel Techniques in Sensory Characterization and Consumer Profiling, 1st ed.; Varela, P., Ares, G., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 207–227. [Google Scholar]
- Macfie, H.J.M.; Bratchell, N.; Greenhoff, K.; Vallis, L.V. Designs to balance the effects of order of presentation and first order carryover effects in hall tests. J. Sens. Stud. 1989, 4, 129–148. [Google Scholar] [CrossRef]
- ISO 3591; Sensory Analysis-Apparatus-Wine-Tasting Glass. International Organization for Standardization: Genève, Switzerland, 2010.
- Cariou, V.; Qannari, E.M. Statistical treatment of free sorting data by means of correspondence and cluster analyses. Food Qual. Prefer. 2018, 68, 1–11. [Google Scholar] [CrossRef]
- Wilkinson, L.; Friendly, M. The history of the cluster heat map. Am. Stat. 2009, 63, 179–184. [Google Scholar] [CrossRef]
- Caldeira, I.; Mateus, A.M.; Belchior, A.P. Flavour and odour profile modifications during the first five years of Lourinhã brandy maturation on different wooden barrels. Anal. Chim. Acta 2006, 563, 264–273. [Google Scholar] [CrossRef]
- Gollihue, J.; Richmond, M.; Wheatley, H.; Pook, V.G.; Nair, M.; Kagan, I.A.; DeBolt, S. Liberation of recalcitrant cell wall sugars from oak barrels into bourbon whiskey during aging. Sci. Rep. 2018, 8, 15899. [Google Scholar] [CrossRef] [Green Version]
- Canas, S.; Belchior, A.P. Effects of caramel addition on the characteristics of wine brandies. Ciência e Téc. Vitiv. 2013, 28, 51–58. [Google Scholar]
- Anjos, O.; Martínez Comesaña, M.; Caldeira, I.; Pedro, S.I.; Eguía Oller, P.; Canas, S. Application of functional data analysis and FTIR-ATR spectroscopy to discriminate wine spirits ageing technologies. Mathematics 2020, 8, 896. [Google Scholar] [CrossRef]
- Litchev, V. Influence of oxidation processes on the development of the taste and flavor of wine distillates. Am. J. Enol. Vitic. 1989, 40, 31–35. [Google Scholar]
- Danilewicz, J.C. Review of reaction mechanisms of oxygen and proposed intermediate reduction products in wine: Central role of iron and copper. Am. J. Enol. Vitic. 2003, 54, 73–85. [Google Scholar]
- Fernandes, T.A.; Antunes, A.M.M.; Caldeira, I.; Anjos, O.; de Freitas, V.; Fargeton, L.; Boissier, B.; Catarino, S.; Canas, S. Identification of gallotannins and ellagitannins in aged wine spirits: A new perspective using alternative ageing technology and high-resolution mass spectrometry. Food Chem. 2022, 382, 132322. [Google Scholar] [CrossRef]
- Glabasnia, A.; Hofmann, T. Sensory-directed identification of taste-active ellagitannins in American (Quercus alba L.) and European oak wood (Quercus robur L.) and quantitative analysis in bourbon whiskey and oak-matured red wines. J. Agric. Food Chem. 2006, 54, 3380–3390. [Google Scholar]
- Hufnagel, J.C.; Hofmann, T. Orosensory-directed identification of astringent mouthfeel and bitter-tasting compounds in red wine. J. Agric. Food Chem. 2008, 56, 1376–1386. [Google Scholar] [CrossRef] [PubMed]
- Nocera, A.; Ricardo-da-Silva, J.M.; Canas, S. Antioxidant activity and phenolic composition of wine spirit resulting from an alternative ageing technology using micro-oxygenation: A preliminary study. Oeno One 2020, 54, 485–496. [Google Scholar] [CrossRef]
- Viriot, C.; Scalbert, A.; Lapierre, C.; Moutounet, M. Ellagitannins and lignins in aging of spirits in oak barrels. J. Agric. Food Chem. 1993, 41, 1872–1879. [Google Scholar] [CrossRef]
- Jánacová, A.; Sádecká, J.; Kohajdová, Z.; Spanik, I. The identification of aroma-active compounds in Slovak brandies using GC-sniffing, GC-MS and sensory evaluation. Chomatographia 2008, 67, 113–121. [Google Scholar] [CrossRef]
- Gallage, N.J.; Moller, B.L. Vanilla. The most popular flavour. In Biotechnology of Natural Products; Schwab, W., Lange, B.M., Wust, M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 3–24. [Google Scholar]
- Wu, J.; Fu, Y.-S.; Lin, K.; Huang, X.; Chen, Y.-J.; Lai, D.; Kang, N.; Huang, L.; Weng, C.-F. A narrative review: The pharmaceutical evolution of phenolic syringaldehyde. Biomed. Pharmacother. 2022, 153, 113339. [Google Scholar] [CrossRef]
- Umar, A.; Guerin, V.; Renard, M.; Boisseau, M.; Garreau, C.; Begaud, B.; Molimard, M.; Moore, N. Effects of Armagnac extracts on human platelet function in vitro and on rat arteriovenous shunt thrombosis in vivo. Thromb. Res. 2003, 110, 135–140. [Google Scholar] [CrossRef]
- WHO. Global Status Report on Alcohol and Health 2018; World Health Organization: Geneva, Switzerland, 2018.
- Winstel, D.; Gautier, E.; Marchal, A. Role of oak coumarins in the taste of wines and spirits: Identification, quantitation, and sensory contribution through perceptive Interactions. J. Agric. Food Chem. 2020, 68, 7424–7443. [Google Scholar] [CrossRef]
- Venugopala, K.N.; Rashmi, V.; Odhav, B. Review on Natural Coumarin Lead Compounds for Their Pharmacological Activity. BioMed Res. Int. 2013, 2013, 963248. [Google Scholar] [CrossRef] [Green Version]
- Skalicka-Wozniaka, K.; Erdogan Orhanb, I.A.; Cordellc, G.; Mohammad Nabavie, S.; Budzynska, B. Implication of coumarins towards central nervous system disorders. Pharmacol. Res. 2016, 103, 188–203. [Google Scholar] [CrossRef]
- Awad, P.; Athès, V.; Decloux, M.E.; Ferrari, G.; Snakkers, G.; Raguenaud, P.; Giampaoli, P. Evolution of volatile compounds during the distillation of Cognac spirit. J. Agric. Food Chem. 2017, 65, 7736–7748. [Google Scholar] [CrossRef]
- Le Floch, A.; Jourdes, M.; Teissedre, P.-L. Polysaccharides and lignin from oak wood used in cooperage: Composition, interest, assays: A review. Carbohydr. Res. 2015, 417, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Colour measurement and analysis in fresh and processed foods: A review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Martins, S.I.F.S.; van Boekel, M.A.J.S. Melanoidins extinction coefficient in the glucose/glycine Maillard reaction. Food Chem. 2003, 83, 135–142. [Google Scholar] [CrossRef]
p | Alternative Technology | p | Traditional Technology | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Natural Blending | Blending Operation | Natural Blending | Blending Operation | |||||||||
Ma1 | Ma2 | B4 | B5 | Mb1 | Mb2 | Mb3 | B1 | B2 | B3 | |||
Alcoholic strength (% v/v) | 0.9999 | 76.83 ± 0.01 | 76.31 ± 0.13 | 76.49 ± 0.09 | 76.72 ± 0.24 | 1.0000 | 76.40 ± 0.14 | 76.14 ± 0.23 | 76.30 ± 0.10 | 75.82 ± 0.39 | 76.13 ± 0.10 | 76.36 ± 0.06 |
Total acidity (g acetic acid/L AE) | 0.9846 | 0.65 ± 0.01 | 0.64 ± 0.01 | 0.67 ± 0.03 | 0.65 ± 0.01 | 0.9927 | 0.66 ± 0.01 | 0.67 ± 0.01 | 0.64 ± 0.03 | 0.65 ± 0.01 | 0.63 ± 0.04 | 0.63 ± 0.02 |
Fixed acidity (g acetic acid/L AE) | 0.5971 | 0.28 ± 0.01 | 0.30 ± 0.01 | 0.34 ± 0.01 | 0.30 ± 0.01 | 0.8837 | 0.21 ± 0.03 | 0.22 ± 0.02 | 0.21 ± 0.02 | 0.23 ± 0.01 | 0.22 ± 0.01 | 0.24 ± 0.01 |
Volatile acidity (g acetic acid/L AE) | 0.8390 | 0.37 ± 0.02 | 0.34 ± 0.01 | 0.33 ± 0.01 | 0.35 ± 0.01 | 0.8399 | 0.45 ± 0.01 | 0.45 ± 0.01 | 0.42 ± 0.01 | 0.41 ± 0.01 | 0.40 ± 0.02 | 0.39 ± 0.01 |
pH | 0.9999 | 4.19 ± 0.02 | 4.17 ± 0.02 | 4.16 ± 0.01 | 4.16 ± 0.01 | 1.0000 | 4.21 ± 0.02 | 4.21 ± 0.03 | 4.19 ± 0.05 | 4.19 ± 0.03 | 4.22 ± 0.05 | 4.21 ± 0.02 |
Total dry extract (g/L) | 0.9939 | 2.44 ± 0.02 | 2.46 ± 0.01 | 2.50 ± 0.02 | 2.42 ± 0.02 | 0.9991 | 1.48 ± 0.01 | 1.47 ± 0.01 | 1.51 ± 0.01 | 1.53 ± 0.02 | 1.49 ± 0.01 | 1.47 ± 0.01 |
TPI | 0.7332 | 56.98 ± 0.04 | 55.86 ± 0.01 | 63.37 ± 0.09 | 56.34 ± 0.12 | 0.9893 | 30.26 ± 0.06 | 30.78 ± 0.07 | 30.94 ± 0.16 | 31.38 ± 0.02 | 28.91 ± 0.10 | 30.57 ± 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lourenço, S.; Anjos, O.; Caldeira, I.; Alves, S.O.; Santos, N.; Canas, S. Natural Blending as a Novel Technology for the Production Process of Aged Wine Spirits: Potential Impact on Their Quality. Appl. Sci. 2022, 12, 10055. https://doi.org/10.3390/app121910055
Lourenço S, Anjos O, Caldeira I, Alves SO, Santos N, Canas S. Natural Blending as a Novel Technology for the Production Process of Aged Wine Spirits: Potential Impact on Their Quality. Applied Sciences. 2022; 12(19):10055. https://doi.org/10.3390/app121910055
Chicago/Turabian StyleLourenço, Sílvia, Ofélia Anjos, Ilda Caldeira, Sheila Oliveira Alves, Nádia Santos, and Sara Canas. 2022. "Natural Blending as a Novel Technology for the Production Process of Aged Wine Spirits: Potential Impact on Their Quality" Applied Sciences 12, no. 19: 10055. https://doi.org/10.3390/app121910055
APA StyleLourenço, S., Anjos, O., Caldeira, I., Alves, S. O., Santos, N., & Canas, S. (2022). Natural Blending as a Novel Technology for the Production Process of Aged Wine Spirits: Potential Impact on Their Quality. Applied Sciences, 12(19), 10055. https://doi.org/10.3390/app121910055