Accuracy of the Fluorescence-Aided Identification Technique (FIT) for Detecting Residual Composite Remnants after Trauma Splint Removal—A Laboratory Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tooth Model Fabrication and Digitalization
2.2. Splint Application
2.3. Splint Removal
2.4. Composite Remnant Identification
- Examination 1: Evaluation of all 10 models by CONV.
- Examination 2 (14 days later): Evaluation of five models by CONV and five models by FIT.
- Examination 3 (14 days later): Evaluation of all 10 models by FIT.
- All examinations were performed in the same room under the same ambient light conditions (examinations at the same day time with no direct solar irradiation, 500–800 Lux) at the University Center for Dental Medicine Basel, Switzerland.
2.5. Data Analysis
2.6. Statistical Analysis
3. Results
3.1. Correctness of Identification of Composite Remnants
3.2. Procedure Time
3.3. Inter-Rater-Reliability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Glendor, U. Epidemiology of traumatic dental injuries—A 12 year review of the literature. Dent. Traumatol. 2008, 24, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Day, P.F.; Flores, M.T.; O’Connell, A.C.; Abbott, P.V.; Tsilingaridis, G.; Fouad, A.F.; Cohenca, N.; Lauridsen, E.; Bourguignon, C.; Hicks, L.; et al. International Association of Dental Traumatology guidelines for the management of traumatic dental injuries: 3. Injuries in the primary dentition. Dent. Traumatol. 2020, 36, 343–359. [Google Scholar] [CrossRef] [PubMed]
- Von Arx, T.; Filippi, A.; Buser, D. Splinting of traumatized teeth with a new device: TTS (Titanium Trauma Splint). Dent. Traumatol. 2001, 17, 180–184. [Google Scholar] [CrossRef] [Green Version]
- Meier, A.; Connert, T.; Dagassan-Berndt, D.; Filippi, A. Dental trauma splint color preference of adults. Swiss Dent. J. 2020, 131, 320–325. [Google Scholar]
- Dettwiler, C.; Meller, C.; Eggmann, F.; Saccardin, F.; Kühl, S.; Filippi, A.; Krastl, G.; Weiger, R.; Connert, T. Evaluation of a Fluorescence-aided Identification Technique (FIT) for removal of composite bonded trauma splints. Dent. Traumatol. 2018, 34, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Dietschi, D. Free-hand composite resin restorations: A key to anterior aesthetics. Pract. Periodontics Aesthet. Dent. 1995, 7, 15–25. [Google Scholar]
- Uo, M.; Okamoto, M.; Watari, F.; Tani, K.; Morita, M.; Shintani, A. Rare earth oxide-containing fluorescent glass filler for composite resin. Dent. Mater. J. 2005, 24, 49–52. [Google Scholar] [CrossRef]
- Fondriest, J. Shade matching in restorative dentistry: The science and strategies. Int. J. Periodontics Restor. Dent. 2003, 23, 467–479. [Google Scholar] [CrossRef]
- Meller, C.; Klein, C. Fluorescence properties of commercial composite resin restorative materials in dentistry. Dent. Mater. J. 2012, 31, 916–923. [Google Scholar] [CrossRef] [Green Version]
- Meller, C.; Connert, T.; Löst, C.; ElAyouti, A. Reliability of a Fluorescence-aided Identification Technique (FIT) for detecting tooth-colored restorations: An ex vivo comparative study. Clin. Oral Investig. 2017, 21, 347–355. [Google Scholar] [CrossRef]
- Klein, C.; Babai, A.; von Ohle, C.; Herz, M.; Wolff, D.; Meller, C. Minimally invasive removal of tooth-colored restorations: Evaluation of a novel handpiece using the fluorescence-aided identification technique (FIT). Clin. Oral Investig. 2020, 24, 2735–2743. [Google Scholar] [CrossRef] [PubMed]
- Dettwiler, C.; Eggmann, F.; Matthisson, L.; Meller, C.; Weiger, R.; Connert, T. Fluorescence-aided Composite Removal in Directly Restored Permanent Posterior Teeth. Oper. Dent. 2020, 45, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Kiran, R.; Chapman, J.; Tennant, M.; Forrest, A.; Walsh, L.J. Detection of Tooth-Colored Restorative Materials for Forensic Purposes Based on Their Optical Properties: An In Vitro Comparative Study. J. Forensic Sci. 2019, 64, 254–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiran, R.; Chapman, J.; Tennant, M.; Forrest, A.; Walsh, L.J. Fluorescence-aided selective removal of resin-based composite restorative materials: An in vitro comparative study. J. Esthet. Restor. Dent. 2020, 32, 310–316. [Google Scholar] [CrossRef]
- Hermanson, A.S.; Bush, M.A.; Miller, R.G.; Bush, P.J. Ultraviolet illumination as an adjunctive aid in dental inspection. J. Forensic Sci. 2008, 53, 408–411. [Google Scholar] [CrossRef] [PubMed]
- Tani, K.; Watari, F.; Uo, M.; Morita, M. Discrimination between composite resin and teeth using fluorescence properties. Dent. Mater. J. 2003, 22, 569–580. [Google Scholar] [CrossRef] [Green Version]
- Carson, D.O.; Orihara, Y.; Sorbie, J.L.; Pounder, D.J. Detection of white restorative dental materials using an alternative light source. Forensic Sci. Int. 1997, 88, 163–168. [Google Scholar] [CrossRef]
- Leontiev, W.; Magni, E.; Dettwiler, C.; Meller, C.; Weiger, R.; Connert, T. Accuracy of the fluorescence-aided identification technique (FIT) for detecting tooth-colored restorations utilizing different fluorescence-inducing devices: An ex vivo comparative study. Clin. Oral Investig. 2021, 25, 5189–5196. [Google Scholar] [CrossRef]
- Ribeiro, A.A.; Almeida, L.F.; Martins, L.P.; Martins, R.P. Assessing adhesive remnant removal and enamel damage with ultraviolet light: An in-vitro study. Am. J. Orthod. Dentofac. Orthop. 2017, 151, 292–296. [Google Scholar] [CrossRef] [Green Version]
- Stadler, O.; Dettwiler, C.; Meller, C.; Dalstra, M.; Verna, C.; Connert, T. Evaluation of a Fluorescence-aided Identification Technique (FIT) to assist clean-up after orthodontic bracket debonding. Angle Orthod. 2019, 89, 876–882. [Google Scholar] [CrossRef] [Green Version]
- Schott, T.C.; Meller, C. A new Fluorescence-aided Identification Technique (FIT) for optimal removal of resin-based bracket bonding remnants after orthodontic debracketing. Quintessence Int. 2018, 49, 809–813. [Google Scholar] [PubMed]
- Kiran, R.; Walsh, L.J.; Forrest, A.; Tennant, M.; Chapman, J. Forensic applications: Fluorescence properties of tooth-coloured restorative materials using a fluorescence DSLR camera. Forensic Sci. Int. 2017, 273, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Pretty, I.A.; Smith, P.W.; Edgar, W.M.; Higham, S.M. The use of quantitative light-induced fluorescence (QLF) to identify composite restorations in forensic examinations. J. Forensic Sci. 2002, 47, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Eliades, T.; Gioka, C.; Heim, M.; Eliades, G.; Makou, M. Color stability of orthodontic adhesive resins. Angle Orthod. 2004, 74, 391–393. [Google Scholar]
- Quirynen, M.; Marechal, M.; Busscher, H.J.; Weerkamp, A.H.; Darius, P.L.; van Steenberghe, D. The influence of surface free energy and surface roughness on early plaque formation. An in vivo study in man. J. Clin. Periodontol. 1990, 17, 138–144. [Google Scholar] [CrossRef]
- Crumpler, D.C.; Bayne, S.C.; Sockwell, S.; Brunson, D.; Roberson, T.M. Bonding to resurfaced posterior composites. Dent. Mater. 1989, 5, 417–424. [Google Scholar] [CrossRef]
- Kupiec, K.A.; Barkmeier, W.W. Laboratory evaluation of surface treatments for composite repair. Oper. Dent. 1996, 21, 59–62. [Google Scholar]
- Lucena-Martín, C.; González-López, S.; Navajas-Rodríguez de Mondelo, J.M. The effect of various surface treatments and bonding agents on the repaired strength of heat-treated composites. J. Prosthet. Dent. 2001, 86, 481–488. [Google Scholar] [CrossRef] [Green Version]
- Bonstein, T.; Garlapo, D.; Donarummo, J.; Bush, P.J. Evaluation of varied repair protocols applied to aged composite resin. J. Adhes. Dent. 2005, 7, 41–49. [Google Scholar]
- Hannig, C.; Laubach, S.; Hahn, P.; Attin, T. Shear bond strength of repaired adhesive filling materials using different repair procedures. J. Adhes. Dent. 2006, 8, 35–40. [Google Scholar]
- Ishihara, S. Tests for Colour Blindness; Handaya Hongo Harukich: Tokyo, Japan, 1917. [Google Scholar]
- Mehl, A.; Gloger, W.; Kunzelmann, K.H.; Hickel, R. A new optical 3-D device for the detection of wear. J. Dent. Res. 1997, 76, 1799–1807. [Google Scholar] [CrossRef] [PubMed]
- Haddad, H.J.; Jakstat, H.A.; Arnetzl, G.; Borbely, J.; Vichi, A.; Dumfahrt, H.; Renault, P.; Corcodel, N.; Pohlen, B.; Marada, G.; et al. Does gender and experience influence shade matching quality? J. Dent. 2009, 37, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Ender, A.; Mehl, A. Full arch scans: Conventional versus digital impressions—An in-vitro study. Int. J. Comput. Dent. 2011, 14, 11–21. [Google Scholar]
- Patzelt, S.B.; Emmanouilidi, A.; Stampf, S.; Strub, J.R.; Att, W. Accuracy of full-arch scans using intraoral scanners. Clin. Oral Investig. 2014, 18, 1687–1694. [Google Scholar] [CrossRef] [PubMed]
- Ender, A.; Mehl, A. In-vitro evaluation of the accuracy of conventional and digital methods of obtaining full-arch dental impressions. Quintessence Int. 2015, 46, 9–17. [Google Scholar]
- Meller, C.; Klein, C. Fluorescence of composite resins: A comparison among properties of commercial shades. Dent. Mater. J. 2015, 34, 754–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, M.K.; Vieira, S.; Rached, R.N.; de Almeida, J.B.; Aguiar, M.; de Souza, E.M. Fluorescence intensity of resin composites and dental tissues before and after accelerated aging: A comparative study. Oper. Dent. 2008, 33, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Klein, C.; Wolff, D.; Ohle, C.V.; Meller, C. The fluorescence of resin-based composites: An analysis after ten years of aging. Dent. Mater. J. 2021, 40, 94–100. [Google Scholar] [CrossRef]
- Lee, Y.K.; Lu, H.; Powers, J.M. Changes in opalescence and fluorescence properties of resin composites after accelerated aging. Dent. Mater. 2006, 22, 653–660. [Google Scholar] [CrossRef]
- Lee, Y.K.; Lu, H.; Powers, J.M. Optical properties of four esthetic restorative materials after accelerated aging. Am. J. Dent. 2006, 19, 155–158. [Google Scholar]
- Jonke, E.; Weiland, F.; Freudenthaler, J.W.; Bantleon, H.P. Heat generated by residual adhesive removal after debonding of brackets. World J. Orthod. 2006, 7, 357–360. [Google Scholar] [PubMed]
- Baysal, A.; Uysal, T.; Usumez, S. Temperature rise in the pulp chamber during different stripping procedures. Angle Orthod. 2007, 77, 478–482. [Google Scholar] [CrossRef]
- Kley, P.; Frentzen, M.; Küpper, K.; Braun, A.; Kecsmar, S.; Jäger, A.; Wolf, M. Thermotransduction and heat stress in dental structures during orthodontic debonding: Effectiveness of various cooling strategies. J. Orofac. Orthop. 2016, 77, 185–193. [Google Scholar] [CrossRef] [PubMed]
1: FD | Fully correct detection |
2: PD | Partly detected |
3: ND | Not detected |
4: FP | False positive entirely (no composite in situ) |
5: FD+ | FD + false positive |
6: PD+ | PD + false positive |
7: ND+ | ND + false positive |
Examination | ||||
---|---|---|---|---|
COI Score | 1 | 2 | 3 | |
CONV | 1 | 209 | 95 | / |
2 | 93 | 87 | / | |
3 | 147 | 92 | / | |
4 | 105 | 31 | / | |
5 | 58 | 34 | / | |
6 | 45 | 18 | / | |
7 | 143 | 43 | / | |
Correct | 209 | 95 | / | |
False | 591 | 305 | / | |
FIT | 1 | / | 354 | 714 |
2 | / | 5 | 27 | |
3 | / | 15 | 22 | |
4 | / | 10 | 12 | |
5 | / | 13 | 20 | |
6 | / | 0 | 1 | |
7 | / | 3 | 4 | |
Correct | / | 354 | 714 | |
False | / | 46 | 86 |
Examination | n | Mean ± Standard Deviation [s] | Median [s] | Min [s] | Max [s] | |
---|---|---|---|---|---|---|
1 | CONV | 800 | 117 ± 9 | 120 | 70 | 120 |
FIT | No assessment | |||||
2 | CONV | 400 | 118 ± 5 | 120 | 90 | 120 |
FIT | 400 | 23 ± 5 | 22 | 10 | 38 | |
3 | CONV | No assessment | ||||
FIT | 800 | 24 ± 5 | 24 | 10 | 38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magni, E.; Leontiev, W.; Soliman, S.; Dettwiler, C.; Klein, C.; Krastl, G.; Weiger, R.; Connert, T. Accuracy of the Fluorescence-Aided Identification Technique (FIT) for Detecting Residual Composite Remnants after Trauma Splint Removal—A Laboratory Study. Appl. Sci. 2022, 12, 10054. https://doi.org/10.3390/app121910054
Magni E, Leontiev W, Soliman S, Dettwiler C, Klein C, Krastl G, Weiger R, Connert T. Accuracy of the Fluorescence-Aided Identification Technique (FIT) for Detecting Residual Composite Remnants after Trauma Splint Removal—A Laboratory Study. Applied Sciences. 2022; 12(19):10054. https://doi.org/10.3390/app121910054
Chicago/Turabian StyleMagni, Eva, Wadim Leontiev, Sebastian Soliman, Christian Dettwiler, Christian Klein, Gabriel Krastl, Roland Weiger, and Thomas Connert. 2022. "Accuracy of the Fluorescence-Aided Identification Technique (FIT) for Detecting Residual Composite Remnants after Trauma Splint Removal—A Laboratory Study" Applied Sciences 12, no. 19: 10054. https://doi.org/10.3390/app121910054
APA StyleMagni, E., Leontiev, W., Soliman, S., Dettwiler, C., Klein, C., Krastl, G., Weiger, R., & Connert, T. (2022). Accuracy of the Fluorescence-Aided Identification Technique (FIT) for Detecting Residual Composite Remnants after Trauma Splint Removal—A Laboratory Study. Applied Sciences, 12(19), 10054. https://doi.org/10.3390/app121910054