Potential Effect of Syzygium aromaticum (Cloves) Extract on Serum Antioxidant Status and Lipid Profiles in Wistar Rats with Artesunate Toxicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Sample Collection
2.2. Chemicals
2.3. Sample Preparation
2.4. Phytochemical Quantification
2.5. Experimental Animals
2.6. Experimental Design
2.7. Animal Sacrifice and Serum Collection
2.8. Biochemical Assays
2.8.1. Lipid Profile Assays
2.8.2. Malondialdehyde (MDA) Assay
2.8.3. Superoxide Dismutase (SOD) Assay
2.8.4. Nitric Oxide (NO) Assay
2.8.5. Glutathione (GSH) Assay
2.8.6. Glutathione Peroxidase (GPx) Assay
2.8.7. Catalase (CAT) Assay
2.9. Statistical Analysis
3. Results
3.1. Estimation of Phytochemicals Content in HESAB
3.2. Effect of HESAB on Serum Lipid Profile
3.3. Effects of HESAB on Antioxidant Enzymes
3.4. Effects of HESAB on Oxidative Stress Biomarkers in Wistar Rats
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HESAB | Hydroethanolic extract of Syzygium aromaticum buds |
ART | Artesunate |
MDA | Malondialdehyde |
SOD | Superoxide dismutase |
NO | Nitric oxide |
GSH | Glutathione |
GPx | Glutathione peroxidase |
CAT | Catalase |
TC | Total cholesterol |
TAG | Triglyceride |
HDL | High-density lipoprotein |
LDL | Low-density lipoprotein |
DMSO | Dimethyl sulfoxide |
ROS | Reactive oxygen species |
TBA | Thiobarbituric acid |
TCA | Trichloroacetic acid |
GAE | Gallic acid equivalent |
References
- Peixoto, H.M.; Marchesini, P.B.; de Oliveira, M.R. Efficacy and safety of artesunate-mefloquine therapy for treating uncomplicated Plasmodium falciparum malaria: Systematic review and meta-analysis. Trans. R. Soc. Trop. Med. Hyg. 2016, 110, 626–636. [Google Scholar] [PubMed]
- Efferth, T.; Dunstan, H.; Sauerbrey, A.; Miyachi, H.; Chitambar, C.R. The anti-malarial artesunate is also active against cancer. Int. J. Oncol. 2001, 18, 767–773. [Google Scholar] [CrossRef]
- Haynes, R.K.; Cheu, K.W.; N’Da, D.; Coghi, P.; Monti, D. Considerations on the mechanism of action of artemisinin antimalarials: Part 1—The ‘carbon radical’ and ‘heme’ hypotheses. Infect. Disord. Drug Targets 2013, 13, 217–277. [Google Scholar] [CrossRef]
- Bartoloni, A.; Zammarchi, L. Clinical aspects of uncomplicated and severe malaria. Mediterr. J. Hematol. Infect. Dis. 2012, 4, e2012026. [Google Scholar] [CrossRef] [PubMed]
- Akinsomisoye, O.S.; Raji, Y. Long-term administration of artesunate induces reproductive toxicity in male rats. J. Reprod. Infertil. 2011, 12, 249–260. [Google Scholar]
- Yoshikawa, T.T. Antimicrobial resistance and aging: Beginning of the end of the antibiotics era. J. Am. Geriatr. Soc. 2002, 50, 226–229. [Google Scholar] [CrossRef]
- Parle, M.; Khanna, D. Clove: A champion spice international. J. Res. Ayurveda Pharm. 2011, 2, 47–54. [Google Scholar]
- Dai, J.; Zhu, L.; Yang, L.; Qiu, J. Chemical composition, antioxidant and antimicrobial activities of essential oil from Wedelia prostrata. EXCLI J. 2013, 12, 479–490. [Google Scholar]
- Prasad, R.C.; Herzog, B.; Boone, B.; Sims, L.; Waltner-Law, M. An extract of Syzygium aromaticum represses genes encoding hepatic gluconeogenic enzymes. J. Ethnopharmacol. 2005, 96, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Mejía-Argueta, E.L.; Santillán-Benítez, J.G.; Canales-Martinez, M.M. Antimicrobial activity of Syzygium aromaticum L. essential oil on extended-spectrum beta-lactamases-producing Escherichia coli. Bull. Natl. Res. Cent. 2020, 44, 201. [Google Scholar] [CrossRef]
- Tajuddin, A.S.; Latif, A.; Qasmi, I. Effect of 50% ethanolic extract of Syzygium aromaticum (L.) Merr. & Perry. (Clove) on sexual behaviour of normal male rats. BMC Complementary Altern. Med. 2004, 4, 4–17. [Google Scholar]
- Dorman, H.J.D.; Surai, D.; Deans, S.G. In vitro antioxidant activity of a number of plant essential oils and Phytoconstituents. J. Essent. Oil Res. 2000, 12, 241–248. [Google Scholar] [CrossRef]
- Chagas, V.T.; França, L.M.; Malik, S.; Paes, A.M. Syzygium cumini (L.) skeels: A prominent source of bioactive molecules against cardio-metabolic diseases. Front. Pharmacol. 2015, 6, 259. [Google Scholar] [CrossRef] [PubMed]
- Obadoni, B.O.; Ochuko, P.O. Phytochemical studies and comparative efficacy of the crude extracts of some homeostatic plants in Edo and Delta States of Nigeria. Glob. J. Pure Appl. Sci. 2001, 8, 203–208. [Google Scholar]
- Fafowora, M.V.; Atanu, F.; Sanya, O.; Olorunsogo, O.O.; Erukainure, O.L. Effect of oral co-administration of artesunate with ferrous sulfate on rat liver mitochondrial membrane permeability transition. Drug Chem. Toxicol. 2011, 34, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Richmond, N. Preparation and properties of a cholesterol oxidase from Nocadia sp. and its application to the enzymatic assay of total cholesterol in serum. J. Chem. 1973, 1, 135. [Google Scholar]
- Tietz, N.W. Colorimetric method of triglyceride estimation. In Clinical Guide to Laboratory Tests, 2nd ed.; WB Saunders Company: Philadelphia, PA, USA, 1990; pp. 554–556. [Google Scholar]
- Afolabi, I.S.; Akuiyibo, S.M.; Rotimi, S.O.; Adeyemi, A.O. In vivo evaluation of lipid and antioxidants qualities of Carica papaya seed oil. J. Nat. Prod. 2011, 4, 125–135. [Google Scholar]
- Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. Methods Enzymol. 1978, 52, 302–310. [Google Scholar]
- Esterbauer, H.; Cheeseman, K.H. Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 1990, 186, 407–421. [Google Scholar]
- Misra, H.P.; Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972, 247, 3170–3175. [Google Scholar] [CrossRef]
- Bryan, N.S.; Grisham, M.B. Methods to detect nitric oxide and its metabolites in biological samples. Free. Radic. Biol. Med. 2007, 43, 645–657. [Google Scholar] [CrossRef]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Sedlak, J.; Lindsay, R.H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem. 1968, 25, 192–205. [Google Scholar] [CrossRef]
- Özyürek, M.; Baki, S.; Güngör, N.; Çelik, S.E.; Güçlü, K.; Apak, R. Determination of biothiols by a novel on-line HPLC-DTNB assay with post-column detection. Anal. Chim. Acta 2012, 750, 173–181. [Google Scholar] [CrossRef]
- Sinha, A.K. Colorimetric assay of catalase. Anal. Biochem. 1972, 47, 389–394. [Google Scholar] [CrossRef]
- O’Neill, P.M.; Barton, V.E.; Ward, S.A. The molecular mechanism of action of artemisinin--the debate continues. Molecules 2010, 15, 1705–1721. [Google Scholar] [CrossRef]
- Shittu, S.; Oyeyemi, W.; Okewumi, T.A.; Salman, T. Role of oxidative stress in therapeutic administration of artesunate on sperm quality and testosterone level in male albino rats. Afr. J. Biotechnol. 2013, 12, 70–73. [Google Scholar] [CrossRef]
- Berdelle, N.; Nikolova, T.; Quiros, S.; Efferth, T.; Kaina, B. Artesunate induces oxidative DNA damage, sustained DNA double-strand breaks, and the ATM/ATR damage response in cancer cells. Mol. Cancer Ther. 2011, 10, 2224–2233. [Google Scholar] [CrossRef]
- Mulholland, C.W.; Elwood, P.C.; Davis, A.; Thurnham, D.I.; Kennedy, O.; Coulter, J.; Fehily, A.; Strain, J.J. Antioxidant enzymes, inflammatory indices and lifestyle factors in older men: A cohort analysis. QJM Int. J. Med. 1999, 92, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef]
- Lushchak, V.I. Glutathione homeostasis and functions: Potential targets for medical interventions. J. Amino Acids 2012, 2012, 736837. [Google Scholar] [CrossRef]
- Silvagno, F.; Vernone, A.; Pescarmona, G.P. The role of glutathione in protecting against the severe inflammatory response triggered by COVID-19. Antioxidants 2020, 9, 624. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, A.; Herrero-de-Dios, C.; Belmonte, R.; Budge, S.; Lopez, G.A.; Kolmogorova, A.; Lee, K.; Martin, B.; Ribeiro, A.; Bebes, A.; et al. Elevated catalase expression in a fungal pathogen is a double-edged sword of iron. PLoS Pathog. 2017, 13, e1006405. [Google Scholar] [CrossRef]
- Gulcin, I.; Sat, I.G.; Beydemir, S.; Elmastas, M.; Kufrevioglu, O.I. Comparison of antioxidant activity of clove (Eugenia caryophyllata Thunb) buds and lavender (Lavandula stoechas L.). Food Chem. 2004, 879, 393–400. [Google Scholar] [CrossRef]
- Lu, C.Y.; Wang, E.K.; Lee, H.C.; Tsay, H.J.; Wei, Y.H. Increased expression of manganese-superoxide dismutase in fibroblasts of patients with CPEO syndrome. Mol. Genet. Metab. 2003, 80, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Bas, H.; Kalender, S. Antioxidant status, lipid peroxidation and testis histo-architecture induced by lead nitrate and mercury chloride in male rats. Braz. Arch. Biol. Technol. 2016, 59, e16160151. [Google Scholar] [CrossRef]
- Antwi-Boasiako, C.; Dankwah, G.B.; Aryee, R.; Hayfron-Benjamin, C.; Aboagye, G.; Campbell, A.D. Correlation of lipid peroxidation and nitric oxide metabolites, trace elements, and antioxidant enzymes in patients with sickle cell disease. J. Clin. Lab. Anal. 2020, 34, e23294. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.L.; Shi, Y.H.; Hao, G.; Li, W.; Le, G.W. Increasing oxidative stress with progressive hyperlipidemia in human: Relation between malondialdehyde and atherogenic index. J. Clin. Biochem. Nutr. 2008, 43, 154–158. [Google Scholar] [CrossRef]
- Hernández-Saavedra, D.; Pérez-Ramírez, I.F.; Ramos-Gómez, M.; Mendoza-Díaz, S.; Loarca-Pina, G.; Reynoso-Camacho, R. Phytochemical characterization and effect of Calendula officinalis, Hypericum perforatum, and Salvia officinalis infusions on obesity-associated cardiovascular risk. Med. Chem. Res. 2016, 25, 163–172. [Google Scholar] [CrossRef]
- Ghowsi, M.; Yousofvand, N.; Moradi, S. Effects of Salvia officinalis L. (common sage) leaves tea on insulin resistance, lipid profile, and oxidative stress in rats with polycystic ovary: An experimental study. Avicenna J. Phytomed. 2020, 10, 263–272. [Google Scholar]
- Rizzo, M.; Berneis, K. Lipid triad or atherogenic lipoprotein phenotype: A role in cardiovascular prevention. J. Atheroscler. Thromb. 2005, 12, 237–239. [Google Scholar] [CrossRef] [PubMed]
- White, M.M.; Geraghty, P.; Hayes, E.; Cox, S.; Leitch, W.; Alfawaz, B.; Reeves, E.P. Neutrophil membrane cholesterol content is a key factor in cystic fibrosis lung disease. EBio Med. 2017, 23, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Viswanath, G.; Salunke, R.; Roy, P. Effects of flavonoid-rich extract from seeds of Eugenia jambolana (L.) on carbohydrate and lipid metabolism in diabetic mice. Food Chem. 2008, 110, 697–705. [Google Scholar] [CrossRef]
- Sharma, A.K.; Bharti, S.; Kumar, R.; Krishnamurthy, B.; Bhatia, J.; Kumari, S.; Arya, D.S. Syzygium cumini ameliorates insulin resistance and β-cell dysfunction via modulation of PPAR, dyslipidemia, oxidative stress, and TNF-α in type 2 diabetic rats. J. Pharmacol. Sci. 2012, 119, 205–213. [Google Scholar] [CrossRef]
- Batiha, G.E.; Alkazmi, L.M.; Wasef, L.G.; Beshbishy, A.M.; Nadwa, E.H.; Rashwan, E.K. Syzygium aromaticum L. (Myrtaceae): Traditional uses, bioactive chemical constituents, pharmacological and toxicological activities. Biomolecules 2020, 10, 202. [Google Scholar] [CrossRef]
- Lakshmi, V.J.; Manasa, K. Various phytochemical constituents and their potential pharmacological activities of plants of the genus Syzygium. Am. J. Pharm. Tech. Res. 2021, 11, 68–85. [Google Scholar]
Phytochemical Constituents | Concentration |
---|---|
Alkaloids | 17.33 ± 2.31 mg/g |
Tannins | 1.93 ± 0.031 mg/g |
Saponins | 1.14 ± 1.53 mg/g |
Cardiac glycosides | 0.13± 0.03 mg/g |
Anthraquinones | 0.16 ± 0.1 mg/g |
Flavonoids | 64.63 ± 0.35 mg GAE/g |
Group/Parameters | TC (mg/dL) | TAG (mg/dL) | HDL (mg/dL) | LDL (mg/dL) |
---|---|---|---|---|
Control | 41.42 ± 7.57 | 28.18 ± 1.58 | 22.18 ± 0.37 | 27.73 ± 5.00 |
ART only | 69.42 ±8.03 a,c,d,f | 34.43 ± 6.04 d,f | 17.81 ± 0.42 | 45.1 ± 9.66 a,c,d,e,f |
400 mg/kgbw HESAB | 50.75 ± 8.52 | 30.51 ± 7.12 | 23.75 ± 0.57 | 20.23 ± 3.39 b |
800 mg/kgbw HESAB | 44.67 ± 4.30 | 20.62 ± 8.01 | 17.81 ± 0.17 | 24.11 ± 6.61 |
ART + 400 mg/kgbw HESAB | 55.42 ± 8.47 | 28.45 ± 3.12 | 18.13 ± 0.28 | 26.89 ± 11.32 |
ART+ 800 mg/kgbw HESAB | 51.92 ± 7.23 | 21.23 ± 1.57 | 26.6 ± 0.28 | 30.74 ± 5.74 |
Parameters/ Group | CAT μmol/mL | SOD μmol/mL | GPX μmol/mL |
---|---|---|---|
Control | 19.03 ± 4.25 | 8.05 ± 2.91 | 10.62 ± 3.24 |
ART only | 7.62 ± 2.15 a,c,d,e,f | 2.76 ± 1.52 a,c,d,e,f | 3.54 ± 1.91 a,c,d,e |
400 mg/kgbw HESAB | 27.07 ± 5.32 | 8.35 ± 2.24 | 8.01 ± 2.39 |
800 mg/kg bw HESAB | 25.38 ± 5.26 | 6.24 ± 1.62 | 6.03 ± 2.12 |
ART + 400 mg/kgbw HESAB | 15.228 ± 4.37 | 6.34 ± 1.46 | 7.37 ± 3.11 |
ART+ 800 mg/kg bw HESAB | 18.866 ± 2.59 | 5.020 ± 0.89 | 5.05 ± 2.01 |
Parameters/ Group | MDA (µmol/L) | NO (µmol/L) | GSH (μM) |
---|---|---|---|
Control | 2.237 ± 0.95 | 6.20 ± 2.21 | 0.49 ± 0.068 |
ART only | 5.032 ± 1.25 a,c,d,e,f | 10.65 ± 3.84 c,d,e | 0.20 ± 0.145 a |
400 mg/kgbw HESAB | 1.763 ± 0.58 | 4.54 ± 1.33 | 0.41 ± 0.023 |
800 mg/kgbw HESAB | 1.981 ± 0.67 | 4.06 ± 0.98 | 0.45 ± 0.12 |
ART + 400 mg/kgbw HESAB | 2.271 ± 0.91 | 5.64 ± 1.76 | 0.38 ± 0.19 |
ART+ 800 mg/kgbw HESAB | 2.609 ± 0.56 | 7.32 ± 2.17 | 0.33 ± 0.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adegbola, M.V.; Anyim, G.; Ntwasa, M.; Ayeleso, A.O.; Oyedepo, T.A. Potential Effect of Syzygium aromaticum (Cloves) Extract on Serum Antioxidant Status and Lipid Profiles in Wistar Rats with Artesunate Toxicity. Appl. Sci. 2022, 12, 8216. https://doi.org/10.3390/app12168216
Adegbola MV, Anyim G, Ntwasa M, Ayeleso AO, Oyedepo TA. Potential Effect of Syzygium aromaticum (Cloves) Extract on Serum Antioxidant Status and Lipid Profiles in Wistar Rats with Artesunate Toxicity. Applied Sciences. 2022; 12(16):8216. https://doi.org/10.3390/app12168216
Chicago/Turabian StyleAdegbola, Mosebolatan Victoria, Godwin Anyim, Monde Ntwasa, Ademola Olabode Ayeleso, and Temitope Adenike Oyedepo. 2022. "Potential Effect of Syzygium aromaticum (Cloves) Extract on Serum Antioxidant Status and Lipid Profiles in Wistar Rats with Artesunate Toxicity" Applied Sciences 12, no. 16: 8216. https://doi.org/10.3390/app12168216
APA StyleAdegbola, M. V., Anyim, G., Ntwasa, M., Ayeleso, A. O., & Oyedepo, T. A. (2022). Potential Effect of Syzygium aromaticum (Cloves) Extract on Serum Antioxidant Status and Lipid Profiles in Wistar Rats with Artesunate Toxicity. Applied Sciences, 12(16), 8216. https://doi.org/10.3390/app12168216