Enhancement of Medical Images through an Iterative McCann Retinex Algorithm: A Case of Detecting Brain Tumor and Retinal Vessel Segmentation
Abstract
:1. Introduction
- To analyze brain MRI and retinal images for early disease diagnosis.
- To validate the proposed McCann Retinex algorithm to handle low-varying contrast and noise issues, as well as to observe the impact of the technique on postprocessing.
- The noise factor always impacts the quality of image processing and machine learning methods, and the main objective is to analyze the impact of noise on the retinal color fundus images and brain MRI.
2. Related Work
3. The Proposed Method
3.1. McCann Retinex Algorithm
4. Databases and Evaluation Parameters
4.1. Database
4.2. Evaluation Parameters
4.2.1. Peak Signal-to-Noise Ratio (PSNR)
4.2.2. Contrast Determination
4.2.3. Segmentation Measuring Parameters
5. Results and Discussion
5.1. Analysis of the Enhancement Technique
5.1.1. Analysis of Retinal Fundus Images
5.1.2. Analysis of MR Brain Images
5.2. Overall Analysis of McCann Retinex Algorithm
5.3. Comparative Analysis of Image Enhancement with Existing Image Enhancement Techniques
5.4. Impact of the Proposed Enhancement Method on the Segmentation Process
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niemeijer, M.; Van Ginneken, B.; Cree, M.J.; Mizutani, A.; Quellec, G.; Sánchez, C.I.; Zhang, B.; Hornero, R.; Lamard, M.; Muramatsu, C. Retinopathy online challenge: Automatic detection of microaneurysms in digital color fundus photographs. IEEE Trans. Med. Imaging 2009, 29, 185–195. [Google Scholar] [CrossRef]
- Soomro, T.A.; Afifi, A.J.; Zheng, L.; Soomro, S.; Gao, J.; Hellwich, O.; Paul, M. Deep learning models for retinal blood vessels segmentation: A review. IEEE Access 2019, 7, 71696–71717. [Google Scholar] [CrossRef]
- Soomro, T.A.; Zheng, L.; Afifi, A.J.; Ali, A.; Yin, M.; Gao, J. Artificial intelligence (AI) for medical imaging to combat coronavirus disease (COVID-19): A detailed review with direction for future research. Artif. Intell. Rev. 2022, 55, 1409–1439. [Google Scholar] [CrossRef]
- Almalki, Y.E.; Soomro, T.A.; Irfan, M.; Alduraibi, S.K.; Ali, A. Computerized Analysis of Mammogram Images for Early Detection of Breast Cancer. Healthcare 2022, 10, 801. [Google Scholar] [CrossRef]
- Almalki, Y.E.; Soomro, T.A.; Irfan, M.; Alduraibi, S.K.; Ali, A. Impact of Image Enhancement Module for Analysis of Mammogram Images for Diagnostics of Breast Cancer. Sensors 2022, 22, 1868. [Google Scholar] [CrossRef]
- Bhutto, J.A.; Tian, L.; Du, Q.; Sun, Z.; Yu, L.; Soomro, T.A. An Improved Infrared and Visible Image Fusion Using an Adaptive Contrast Enhancement Method and Deep Learning Network with Transfer Learning. Remote Sens. 2022, 14, 939. [Google Scholar] [CrossRef]
- Faust, O.; Acharya, R.; Ng, E.Y.-K.; Ng, K.-H.; Suri, J.S. Algorithms for the automated detection of diabetic retinopathy using digital fundus images: A review. J. Med. Syst. 2012, 36, 145–157. [Google Scholar] [CrossRef]
- Soomro, T.A.; Ali, A.; Jandan, N.A.; Afifi, A.J.; Irfan, M.; Alqhtani, S.; Glowacz, A.; Alqahtani, A.; Tadeusieeicz, R.; Kantoch, E.; et al. Impact of Novel Image Preprocessing Techniques on Retinal Vessel Segmentation. Electronics 2021, 10, 2297. [Google Scholar] [CrossRef]
- Khan, M.A.; Soomro, T.A.; Khan, T.M.; Bailey, D.G.; Gao, J.; Mir, N. Automatic retinal vessel extraction algorithm based on contrast-sensitive schemes. In Proceedings of the 2016 International conference on image and vision computing New Zealand (IVCNZ), Palmerston North, New Zealand, 21–22 November 2016; pp. 1–5. [Google Scholar]
- Malaysia, P.D. Clinical Practice Guidelines (CPG) Management of Type 2 Diabetes Mellitus; Ministry of Health Malaysia, Malaysian Endocrine and Metabolic Society, Academy of Medicine: Kuala Lumpur, Malaysia, 2009; p. 1. [Google Scholar]
- Biswal, B.; Pooja, T.; Subrahmanyam, N.B. Robust retinal blood vessel segmentation using line detectors with multiple masks. IET Image Process. 2018, 12, 389–399. [Google Scholar] [CrossRef]
- Ruta, L.; Magliano, D.; Lemesurier, R.; Taylor, H.; Zimmet, P.; Shaw, J. Prevalence of diabetic retinopathy in Type 2 diabetes in developing and developed countries. Diabetic Med. 2013, 30, 387–398. [Google Scholar] [CrossRef]
- Soomro, T.A.; Khan, M.A.; Gao, J.; Khan, T.M.; Paul, M. Contrast normalization steps for increased sensitivity of a retinal image segmentation method. Signal Image Video Process. 2017, 11, 1509–1517. [Google Scholar] [CrossRef]
- Soomro, T.A.; Afifi, A.J.; Gao, J.; Hellwich, O.; Zheng, L.; Paul, M. Strided fully convolutional neural network for boosting the sensitivity of retinal blood vessels segmentation. Exp. Syst. Appl. 2019, 134, 36–52. [Google Scholar] [CrossRef]
- Khan, M.A.; Khan, T.M.; Soomro, T.A.; Mir, N.; Gao, J. Boosting sensitivity of a retinal vessel segmentation algorithm. Pattern Anal. App. 2019, 22, 583–599. [Google Scholar] [CrossRef]
- Soomro, T.A.; Afifi, A.J.; Shah, A.A.; Soomro, S.; Baloch, G.A.; Zheng, L.; Yin, M.; Gao, J. Impact of image enhancement technique on CNN model for retinal blood vessels segmentation. IEEE Access 2019, 7, 158183–158197. [Google Scholar] [CrossRef]
- Soomro, T.A.; Gao, J.; Khan, T.; Hani, A.F.M.; Khan, M.A.; Paul, M. Computerised approaches for the detection of diabetic retinopathy using retinal fundus images: A survey. Pattern Anal. App. 2017, 20, 927–961. [Google Scholar] [CrossRef]
- Westbrook, C. MRI at a Glance; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Land, E.H.; McCann, J.J. Lightness and retinex theory. Josa 1971, 61, 1–11. [Google Scholar] [CrossRef]
- Frankle, J.A.; McCann, J.J. Method and Apparatus for Lightness Imaging. U.S. Patent No. 4,384,336, 17 May 1983. [Google Scholar]
- Sobol, R. Improving the Retinex algorithm for rendering wide dynamic range photographs. J. Electron. Imaging 2004, 13, 65–74. [Google Scholar] [CrossRef]
- Hani, A.F.M.; Soomro, T.A.; Nugroho, H.; Nugroho, H.A. Enhancement of colour fundus image and FFA image using RETICA. In Proceedings of the 2012 IEEE—EMBS Conference on Biomedical Engineering and Sciences, Langkawi, Malaysia, 17–19 December 2012; pp. 831–836. [Google Scholar]
- Lee, J.-S. Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Mach. Int. 1980, 2, 165–168. [Google Scholar] [CrossRef]
- Soomro, T.A.; Zheng, L.; Afifi, A.J.; Ali, A.; Soomro, S.; Yin, M.; Gao, J. Image Segmentation for MR Brain Tumor Detection Using Machine Learning: A Review. IEEE Rev. Biomed. Eng. 2022, 1–21. [Google Scholar] [CrossRef]
- Odstrcilik, J.; Kolar, R.; Budai, A.; Hornegger, J.; Jan, J.; Gazarek, J.; Kubena, T.; Cernosek, P.; Svoboda, O.; Angelopoulou, E. Retinal vessel segmentation by improved matched filtering: Evaluation on a new high-resolution fundus image database. IET Image Process. 1980, 7, 373–383. [Google Scholar] [CrossRef]
- Marcus, D.S.; Wang, T.H.; Parker, J.; Csernansky, J.G.; Morris, J.C.; Buckner, R.L. Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J. Cogn. Neurosci. 2007, 19, 1498–1507. [Google Scholar] [CrossRef]
- Pfitzner, B.; Steckhan, N.; Arnrich, B. Federated Learning in a Medical Context: A Systematic Literature Review. ACM Trans. Internet Technol. (TOIT) 2021, 21, 1–31. [Google Scholar] [CrossRef]
- Lu, J.; Gong, P.; Ye, J.; Zhang, C. Learning from very few samples: A survey. arXiv 2020, arXiv:2009.02653. [Google Scholar]
- Soomro, T.A.; Gao, J.; Khan, M.A.U.; Khan, T.M.; Paul, M. Role of Image Contrast Enhancement Technique for Ophthalmologist as Diagnostic Tool for Diabetic Retinopathy. In Proceedings of the International Conference on Digital Image Computing: Techniques and Applications (DICTA), Gold Coast, Australia, 30 November–2 December 2016; Volume 2016, pp. 1–8. [Google Scholar]
- Atta, R.; Ghanbar, M. Low-contrast satellite image enhancement using discrete cosine transform pyramid and singular value decomposition. IET Image Process. 2013, 1, 1–12. [Google Scholar] [CrossRef]
- Polesel, A.; Ramponi, G.; Mathews, V.J. Adaptive unsharp masking for contrast enhancement. IEEE Int. Proc. Image Process 1997, 1, 267–270. [Google Scholar]
- Yang, Y.B.; Shang, H.B.; Jia, G.C.; Huang, L.Q. Adaptive unsharp masking method based on region segmentation. Opt. Precis. Eng. 2003, 11, 188–192. [Google Scholar]
- Chaudhuri, S.; Chatterjee, S.; Katz, N.; Nelson, M.; Goldbaum, M. Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imaging 1989, 8, 263–269. [Google Scholar] [CrossRef]
- Hoover, A.D.; Kouznetsova, V.; Goldbaum, M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 2000, 19, 203–210. [Google Scholar] [CrossRef]
- Jiang, X.; Mojon, D. Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 131–137. [Google Scholar] [CrossRef]
- Mallat, S. A theory for multi-resolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–689. [Google Scholar] [CrossRef]
- Laine, A.F.; Song, S. Multiscale wavelet representations for mammographic feature analysis. In Proceedings of the SPIE Conference on Mathematical Methods in Medical Image, San Diego, CA, USA, 23–24 July 1992; Volume 1768, pp. 306–316. [Google Scholar]
- Laine, A.F.; Schuler, S.; Fan, J.; Huda, W. Mammographic feature enhancement by multiscale analysis. IEEE Trans. Med. Imaging 1994, 13, 725–740. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.C.; Chai, J.W.; Wong, S.T. Wavelet-based enhancement for detection of left ventricular myocardial boundaries in magnetic resonance images. Magn. Reson. Imaging 2000, 18, 1135–1141. [Google Scholar] [CrossRef]
- Fu, J.C.; Lien, H.; Wong, S.T.C. Wavelet-based histogram equalization enhancement of gastric sonogram images. Comput. Med. Imaging Graph. 2000, 24, 59–68. [Google Scholar] [CrossRef]
- Fu, Q.; Jung, C.; Xu, K. Retinex-Based Perceptual Contrast Enhancement in Images Using Luminance Adaptation. IEEE Access 2018, 6, 61277–61286. [Google Scholar] [CrossRef]
- Liu, S.; Long, W.; He, L.; Li, Y.; Ding, W. Retinex-Based Fast Algorithm for Low-Light Image Enhancement. Entropy 2021, 23, 746. [Google Scholar] [CrossRef]
- Pan, X.; Li, C.; Pan, Z.; Yan, J.; Tang, S.; Yin, X. Low-Light Image Enhancement Method Based on Retinex Theory by Improving Illumination Map. Appl. Sci. 2022, 12, 5257. [Google Scholar] [CrossRef]
- LaMontagne, P.J.; Benzinger, T.L.; Morris, J.C.; Keefe, S.; Hornbeck, R.; Xiong, C.; Grant, E.; Hassenstab, J.; Moulder, K.; Vlassenko, A.G.; et al. OASIS-3: Longitudinal Neuroimaging, Clinical, and Cognitive Dataset for Normal Aging and Alzheimer Disease. medRxiv 2019. [Google Scholar] [CrossRef]
- Budai, A.; Hornegger, J.; Michelson, G. Multiscale Approach for Blood Vessel Segmentation on Retinal Fundus Images. Investig. Ophthalmol. Vis. Sci. 2009, 50, 325. [Google Scholar]
- Staal, J.; Abràmoff, M.D.; Niemeijer, M.; Viergever, M.A.; Van Ginneken, B. Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 2004, 23, 501–509. [Google Scholar] [CrossRef]
HE | CLAHE | BBHE | Proposed Method | |||||
---|---|---|---|---|---|---|---|---|
Database: Images Types | PSNR | Contrast | PSNR | Contrast | PSNR | Contrast | PSNR | Contrast |
HRF Database: Low Quality Images | 30.12 | 18.17 | 32.76 | 21.34 | 29.89 | 17.83 | 39.58 | 26.46 |
HRF Database: High Quality Images | 32.83 | 21.56 | 34.12 | 24.56 | 31.07 | 20.98 | 41.69 | 44.61 |
Oasis Database: Coronal Plane Images | 19.12 | 39.30 | 21.22 | 40.98 | 20.01 | 38.12 | 23.73 | 63.39 |
Oasis Database: Sagittal Plane Images | 20.34 | 27.21 | 20.97 | 29.01 | 19.94 | 28.98 | 24.55 | 41.02 |
Oasis Database: Axial Plane Images | 18.95 | 41.01 | 22.01 | 42.97 | 21.05 | 42.02 | 23.46 | 69.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almalki, Y.E.; Jandan, N.A.; Soomro, T.A.; Ali, A.; Kumar, P.; Irfan, M.; Keerio, M.U.; Rahman, S.; Alqahtani, A.; Alqhtani, S.M.; et al. Enhancement of Medical Images through an Iterative McCann Retinex Algorithm: A Case of Detecting Brain Tumor and Retinal Vessel Segmentation. Appl. Sci. 2022, 12, 8243. https://doi.org/10.3390/app12168243
Almalki YE, Jandan NA, Soomro TA, Ali A, Kumar P, Irfan M, Keerio MU, Rahman S, Alqahtani A, Alqhtani SM, et al. Enhancement of Medical Images through an Iterative McCann Retinex Algorithm: A Case of Detecting Brain Tumor and Retinal Vessel Segmentation. Applied Sciences. 2022; 12(16):8243. https://doi.org/10.3390/app12168243
Chicago/Turabian StyleAlmalki, Yassir Edrees, Nisar Ahmed Jandan, Toufique Ahmed Soomro, Ahmed Ali, Pardeep Kumar, Muhammad Irfan, Muhammad Usman Keerio, Saifur Rahman, Ali Alqahtani, Samar M. Alqhtani, and et al. 2022. "Enhancement of Medical Images through an Iterative McCann Retinex Algorithm: A Case of Detecting Brain Tumor and Retinal Vessel Segmentation" Applied Sciences 12, no. 16: 8243. https://doi.org/10.3390/app12168243
APA StyleAlmalki, Y. E., Jandan, N. A., Soomro, T. A., Ali, A., Kumar, P., Irfan, M., Keerio, M. U., Rahman, S., Alqahtani, A., Alqhtani, S. M., Hakami, M. A. M., S, A. S., Aldhabaan, W. A., & Khairallah, A. S. (2022). Enhancement of Medical Images through an Iterative McCann Retinex Algorithm: A Case of Detecting Brain Tumor and Retinal Vessel Segmentation. Applied Sciences, 12(16), 8243. https://doi.org/10.3390/app12168243