Detecting DDoS Attacks in IoT-Based Networks Using Matrix Profile
Abstract
:1. Introduction
2. Literature Review
2.1. Machine Learning-Based Methods
2.2. Statistical-Based Methods
2.3. Software-Defined Network Methods
2.4. Other Methods
3. Methodology: Matrix Profile
3.1. Problem Definitions and Notation
3.2. Matrix Profile Procedure
- 1.
- Calculate the distances for the windowed sub-sequence from the whole dataset.
- 2.
- Set an exclusion zone to ignore trivial matches.
- 3.
- Update the distance profile with the minimal values.
- 4.
- Set the first nearest neighbour index [36].
- MPX: a high-speed algorithm that does not require a Fourier transform to compute the matrix profile.
- STOMP: the first algorithm that can be used to calculate the matrix profile for any time-series dataset.
- Brute force PMP: this type of algorithm is considered slow because it tries all possible data and thus is not recommended for large datasets.
4. Findings and Discussion
4.1. Input Setting
- 1.
- The MC profile simulates devices that consume streams of video to transform regular TVs into smart TVs.
- 2.
- The SC profile simulates the operation of a camera that constantly transmits video to a monitoring station.
- 3.
- The SC with additional traffic (ST) profile is similar to the SC profile, but it also includes legitimate traffic related to other services, such as Telnet and HTTP.
- 1.
- MC DDoS attack starts at 11:30:34 AM and ends at 11:43:10 AM.
- 2.
- SC DDoS attack starts at 11:12:51 AM and ends at 12:50:36 PM.
- 3.
- SC with additional traffic DDoS attack starts at 10:59:57 AM and ends at 1:07:58 PM.
4.2. Empirical Findings
4.3. Evaluation and Discussion
5. Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bouhaï, N.; Saleh, I. Internet of Things: Evolutions and Innovations; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Weber, R.H.; Weber, R. Internet of Things; Springer: Berlin/Heidelberg, Germany, 2010; Volume 12. [Google Scholar]
- Syed, A.S.; Sierra-Sosa, D.; Kumar, A.; Elmaghraby, A. IoT in Smart Cities: A Survey of Technologies, Practices and Challenges. Smart Cities 2021, 4, 429–475. [Google Scholar] [CrossRef]
- Chen, W.; Xiao, S.; Liu, L.; Jiang, X.; Tang, Z. A DDoS attacks traceback scheme for SDN-based smart city. Comput. Electr. Eng. 2020, 81, 106503. [Google Scholar] [CrossRef]
- Nasr, E.Y.; Shahrour, I.; Nakhle, F.E.; Sakr, D.R.; Karam, L.Y. Smart City DDoS Attacks Maneuver Based on Identification, Heuristics and Load Balancers. Int. J. Sci. Eng. Res. 2018, 9, 1285–1294. [Google Scholar] [CrossRef]
- Kitchin, R.; Dodge, M. The (in) security of smart cities: Vulnerabilities, risks, mitigation, and prevention. J. Urban Technol. 2019, 26, 47–65. [Google Scholar] [CrossRef]
- Janani, R.; Renuka, K.; Aruna, A.; Lakshmi , N.K. IoT in smart cities: A contemporary survey. Glob. Transit. Proc. 2021, 2, 187–193. [Google Scholar]
- Zhao, F.; Fashola, O.I.; Olarewaju, T.I.; Onwumere, I. Smart city research: A holistic and state of the art literature review. Cities 2021, 119, 103406. [Google Scholar] [CrossRef]
- Ma, C. Smart city and cyber-security; technologies used, leading challenges and future recommendations. Energy Rep. 2021, 7, 7999–8012. [Google Scholar] [CrossRef]
- Traer, S.; Bednar, P. Motives Behind DDoS Attacks. In Digital Transformation and Human Behavior; Metallo, C., Ferrara, M., Lazazzara, A., Za, S., Eds.; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar]
- Bouyeddou, B.; Kadri, B.; Harrou, F.; Sun, Y. DDOS-attacks detection using an efficient measurement-based statistical mechanism. Eng. Sci. Technol. Int. J. 2020, 23, 870–878. [Google Scholar] [CrossRef]
- Kajwadkar, S.; Jain, V.K. A Novel Algorithm for DoS and DDoS attack detection in Internet Of Things. In Proceedings of the 2018 Conference on Information and Communication Technology, Yogyaka, Indonesia, 6–7 March 2018. [Google Scholar] [CrossRef]
- Praseed, A.; Thilagam, P.S. DDoS attacks at the application layer: Challenges and research perspectives for safeguarding web applications. IEEE Commun. Surv. Tutor. 2018, 21, 661–685. [Google Scholar] [CrossRef]
- Hwang, R.H.; Peng, M.C.; Huang, C.W. Detecting IoT Malicious Traffic Based on Autoencoder and Convolutional Neural Network. In Proceedings of the 2019 IEEE Globecom Workshops (GC Wkshps), Waikoloa, HI, USA, 9–13 December 2019. [Google Scholar] [CrossRef]
- Misra, S.; Krishna, P.V.; Agarwal, H.; Saxena, A.; Obaidat, M.S. A Learning Automata Based Solution for Preventing Distributed Denial of Service in Internet of Things. In Proceedings of the 2011 International Conference on Internet of Things and 4th International Conference on Cyber, Physical and Social Computing, Dalian, China, 19–22 October 2011. [Google Scholar] [CrossRef]
- Ye, J.; Cheng, X.; Zhu, J.; Feng, L.; Song, L. A DDoS attack detection method based on SVM in software defined network. Secur. Commun. Netw. 2018, 2018, 9804061. [Google Scholar] [CrossRef]
- Tuan, T.A.; Long, H.V.; Son, L.H.; Kumar, R.; Priyadarshini, I.; Son, N.T.K. Performance evaluation of Botnet DDoS attack detection using machine learning. Evol. Intell. 2020, 13, 283–294. [Google Scholar] [CrossRef]
- Wani, A.R.; Rana, Q.; Saxena, U.; Pandey, N. Analysis and detection of DDoS attacks on cloud computing environment using machine learning techniques. In Proceedings of the 2019 Amity International Conference on Artificial Intelligence, Dubai, United Arab Emirates, 4–6 February 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Fanelli, A.M. Recent Advances in Artificial Neural Networks: Design and Applications; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Alanis, A.Y.; Arana-Daniel, N.; Lopez-Franco, C. Artificial Neural Networks for Engineering Applications; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Yegnanarayana, B. Artificial Neural Networks; PHI Learning Pvt. Ltd.: Delhi, India, 2009. [Google Scholar]
- Ma, Y.; Guo, G. Support Vector Machines Applications; Springer: Berlin/Heidelberg, Germany, 2014; Volume 649. [Google Scholar]
- Suthaharan, S. Support vector machine. In Machine Learning Models and Algorithms for Big Data Classification; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Alkahtani, H.; Aldhyani, T.H.; Al-Yaari, M. Adaptive anomaly detection framework model objects in cyberspace. Appl. Bionics Biomech. 2020, 2020, 6660489. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.A.; Abd Ghani, M.K.; Hamed, R.I.; Mostafa, S.A.; Ibrahim, D.A.; Jameel, H.K.; Alallah, A.H. Solving vehicle routing problem by using improved K-nearest neighbor algorithm for best solution. J. Comput. Sci. 2017, 21, 232–240. [Google Scholar] [CrossRef]
- Wibowo, B.; Alaydrus, M. Smart Home Security Analysis Using Arduino Based Virtual Private Network. In Proceedings of the 2019 Fourth International Conference on Informatics and Computing, Semarang, Indonesia, 16–17 October 2019. [Google Scholar] [CrossRef]
- Majed, H.; Noura, H.N.; Salman, O.; Malli, M.; Chehab, A. Efficient and Secure Statistical DDoS Detection Scheme. In Proceedings of the ICETE, Paris, France, 8–10 July 2020. [Google Scholar]
- Xia, W.; Wen, Y.; Foh, C.H.; Niyato, D.; Xie, H. A survey on software-defined networking. IEEE Commun. Surv. Tutor. 2014, 17, 27–51. [Google Scholar] [CrossRef]
- Ahuja, N.; Singal, G.; Mukhopadhyay, D.; Kumar, N. Automated DDOS attack detection in software defined networking. J. Netw. Comput. Appl. 2021, 187, 103108. [Google Scholar] [CrossRef]
- Wang, B.; Zheng, Y.; Lou, W.; Hou, Y.T. DDoS attack protection in the era of cloud computing and software-defined networking. Comput. Netw. 2015, 81, 308–319. [Google Scholar] [CrossRef]
- Xiao, P.; Qu, W.; Qi, H.; Li, Z. Detecting DDoS attacks against data center with correlation analysis. Comput. Commun. 2015, 67, 66–74. [Google Scholar] [CrossRef]
- Zhang, C.; Green, R. Communication security in internet of thing: Preventive measure and avoid DDoS attack over IoT network. In Proceedings of the 18th Symposium on Communications & Networking, Alexandria, VA, USA, 12–15 April 2015. [Google Scholar]
- Bremler-Barr, A.; Brosh, E.; Sides, M. DDoS attack on cloud auto-scaling mechanisms. In Proceedings of the IEEE INFOCOM 2017—IEEE Conference on Computer Communications, Atlanta, GA, USA, 1–4 May 2017. [Google Scholar]
- Liao, H.J.; Richard Lin, C.H.; Lin, Y.C.; Tung, K.Y. Intrusion detection system: A comprehensive review. J. Netw. Comput. Appl. 2013, 36, 16–24. [Google Scholar] [CrossRef]
- The UCR Matrix Profile Page. Available online: https://www.cs.ucr.edu/~eamonn/MatrixProfile.html (accessed on 30 January 2022).
- Introduction To Matrix Profile. Available online: https://towardsdatascience.com/introdu-ction-to-matrix-profiles-5568f3375d90 (accessed on 30 January 2022).
- Yeh, C.C.M.; Zhu, Y.; Ulanova, L.; Begum, N.; Ding, Y.; Dau, H.A.; Silva, D.F.; Mueen, A.; Keogh, E. Matrix profile I: All pairs similarity joins for time series: A unifying view that includes motifs, discords and shapelets. In Proceedings of the 2016 IEEE 16th International Conference on Data Mining (ICDM), Barcelona, Spain, 12–15 December 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- The Matrix Profile. Available online: https://stumpy.readthedocs.io/en/latest/Tutorial_The-_Matrix_Profile.html (accessed on 30 January 2022).
- Matrix Profile Foundation. Available online: https://matrixprofile.org/posts/how-to-painlessly-analyze-your-time-series/ (accessed on 2 February 2022).
- Zhu, Y.; Zimmerman, Z.; Senobari, N.S.; Yeh, C.C.M.; Funning, G.; Mueen, A.; Brisk, P.; Keogh, E. Matrix profile ii: Exploiting a novel algorithm and gpus to break the one hundred million barrier for time series motifs and joins. In Proceedings of the 2016 IEEE 16th International Conference on Data Mining (ICDM), Barcelona, Spain, 12–15 December 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Law, S.M. STUMPY: A Powerful and Scalable Python Library for Time Series Data Mining. J. Open Source Softw. 2019, 4, 1504. [Google Scholar] [CrossRef]
- Bezerra, V.H.; da Costa, V.G.T.; Martins, R.A.; Junior, S.B.; Miani, R.S.; Zarpelao, B.B. Providing IoT host-based datasets for intrusion detection research. In Proceedings of the Anais do XVIII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais, Porto Alegre, Brasil, 22–25 October 2018; SBC: Augusta, GA, USA, 2018. [Google Scholar]
- Awoyemi, J.O.; Adetunmbi, A.O.; Oluwadare, S.A. Credit card fraud detection using machine learning techniques: A comparative analysis. In Proceedings of the 2017 International Conference on Computing Networking and Informatics (ICCNI), Lagos, Nigeria, 29–31 October 2017. [Google Scholar] [CrossRef]
- Nakagawa, F.H.; Junior, S.B.; Zarpelão, B.B. Attack Detection in Smart Home IoT Networks using CluStream and Page-Hinkley Test. In Proceedings of the 2021 IEEE Latin-American Conference on Communications (LATINCOM), Santo Domingo, Dominican Republic, 17–19 November 2021; IEEE: Piscataway, NJ, USA, 2021. [Google Scholar]
Time-Series Data | Z-Normalised Time-Series Data | |||||
---|---|---|---|---|---|---|
Window Size | No. of TP | No. of FP | Precision in % | No. of TP | No. of FP | Precision in % |
3 | 14 | 1 | 93.33 | 13 | 2 | 86.67 |
5 | 14 | 1 | 93.33 | 12 | 3 | 80.00 |
10 | 14 | 1 | 93.33 | 12 | 3 | 80.00 |
25 | 15 | 0 | 100.0 | 13 | 2 | 86.67 |
50 | 15 | 0 | 100.0 | 15 | 0 | 100.0 |
100 | 15 | 0 | 100.0 | 15 | 0 | 100.0 |
500 | 15 | 0 | 100.0 | 15 | 0 | 100.0 |
1000 | 15 | 0 | 100.0 | 13 | 2 | 86.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzahrani, M.A.; Alzahrani, A.M.; Siddiqui, M.S. Detecting DDoS Attacks in IoT-Based Networks Using Matrix Profile. Appl. Sci. 2022, 12, 8294. https://doi.org/10.3390/app12168294
Alzahrani MA, Alzahrani AM, Siddiqui MS. Detecting DDoS Attacks in IoT-Based Networks Using Matrix Profile. Applied Sciences. 2022; 12(16):8294. https://doi.org/10.3390/app12168294
Chicago/Turabian StyleAlzahrani, Mohammed Ali, Ali M. Alzahrani, and Muhammad Shoaib Siddiqui. 2022. "Detecting DDoS Attacks in IoT-Based Networks Using Matrix Profile" Applied Sciences 12, no. 16: 8294. https://doi.org/10.3390/app12168294
APA StyleAlzahrani, M. A., Alzahrani, A. M., & Siddiqui, M. S. (2022). Detecting DDoS Attacks in IoT-Based Networks Using Matrix Profile. Applied Sciences, 12(16), 8294. https://doi.org/10.3390/app12168294