Study on Suppression Strategy for Broadband Sub-Synchronous Oscillation in Doubly-Fed Wind Power Generation System
Abstract
:1. Introduction
2. Analysis of Influence of SSO on DFIG System Operation
2.1. The Establishment of the Mathematical Model for an RSC with SSO
2.2. Analysis of Influence of SSO Frequency Variation on DFIG System
3. Analysis of SSO Inhibition Mechanism in the DFIG System
3.1. Introduction to the Principle of Back-Stepping Control
3.2. Back-Stepping Control Design Based on DFIG Decoupling Model
3.3. Quasi-Resonant Controller
4. SSO Suppression Strategy for DFIG System
4.1. Design of SSO Suppression Strategy for DFIG System
4.2. Improved Controller Performance Analysis
5. Simulation and Experiment
5.1. Simulation Analysis
5.2. Experimental Verification
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. DFIG Control Model Decoupling
References
- Chen, G.; Li, M.; Xu, T.; Liu, M. Study on technical bottleneck of new energy development. Proc. CSEE 2017, 37, 20–26. [Google Scholar]
- Deng, W.; Wang, H.; Chang, X.; Guo, X. Cause analysis on subsynchronous oscillation in large-scale doubly-fed wind farm. High. Volt. Appar. 2019, 55, 215–221. [Google Scholar]
- Liu, R.; Yao, J.; Wang, X.; Sun, P.; Pei, J.; Hu, J. Dynamic stability analysis and improved LVRT schemes of DFIG-based wind turbines during a symmetrical fault in a weak grid. IEEE Trans. Power Electron. 2020, 35, 303–318. [Google Scholar] [CrossRef]
- Jiang, Q.; Wang, L.; Xie, X. Study on oscillations of powerelectronized power system and their mitigation schemes. High. Volt. Eng. 2017, 43, 1057–1066. [Google Scholar]
- Xue, A.; Fu, X.; Qiao, D.; Wang, Y.; Wang, J. Review and prospect of research on sub-synchronous oscillation mechanism for power system with wind power participation. Electr. Power Autom. Equip. 2020, 40, 118–128. [Google Scholar]
- Li, H.; Abdeen, M.; Chai, Z.; Kamel, S.; Xie, X.; Hu, H.; Wang, K. An improved fast detection method on subsynchronous resonance in a wind power system with a series compensated transmission line. IEEE Access 2019, 6, 61512–61522. [Google Scholar] [CrossRef]
- Xie, X.; Wang, L.; He, J.; Liu, H.; Wang, C.; Zhan, Y. Analysis of subsynchronous resonance/oscillation types in power systems. Power Syst. Technol. 2017, 41, 1043–1049. [Google Scholar]
- Liu, H.; Xie, X.; Zhang, C.; Li, Y.; Liu, H.; Hu, Y. Quantitative SSR analysis of series-compensated DFIG-based wind farms using aggregated RLC circuit model. IEEE Trans. Power Syst. 2017, 32, 474–483. [Google Scholar] [CrossRef]
- Dong, X.; Tian, X.; Zhang, Y.; Song, J. Practical SSR incidence and influencing factor analysis of DFIG-based series-compensated transmission system in guyuan farms. High Voltage Eng. 2017, 41, 461–474. [Google Scholar]
- Dong, H.; Su, M.; Liu, K.; Zou, W. Mitigation strategy of subsynchronous oscillation based on fractional-order sliding mode control for VSC-MTDC systems with DFIG-based wind farm access. IEEE Access 2020, 8, 209242–209250. [Google Scholar] [CrossRef]
- Shair, J.; Xie, X.; Yang, J.; Li, J.; Li, H. Adaptive damping control of subsynchronous oscillation in DFIG-based wind farms connected to series-compensated network. IEEE Trans. Power Deliv. 2022, 37, 1036–1049. [Google Scholar] [CrossRef]
- Shair, J.; Xie, X.; Li, Y.; Terzija, V. Hardware-in-the-Loop and field validation of a rotor-side subsynchronous damping controller for a series compensated DFIG system. IEEE Trans. Power Deliv. 2021, 36, 698–709. [Google Scholar] [CrossRef]
- Leon, A.E.; Amodeo, S.J.; Mauricio, J.M. Enhanced compensation filter to mitigate subsynchronous oscillations in series-compensated DFIG-based wind farms. IEEE Trans. Power Deliv. 2021, 36, 3805–3814. [Google Scholar] [CrossRef]
- Zhang, T.; Hao, Z.; Shu, J.; Zhao, Y.; Yuan, S. Research on SSO suppression of DFIG-based wind farm by impedance scanning. In Proceedings of the 2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada, 2–6 August 2020. [Google Scholar]
- Meng, F.; Sun, D.; Zhou, K.; Wu, J.; Zhao, F.; Sun, L. A sub-synchronous oscillation suppression strategy for doubly fed wind power generation system. IEEE Access. 2021, 9, 83482–83498. [Google Scholar] [CrossRef]
- He, Y.; Hu, J.; Xu, L. The Operation Control of Grid-Connected Asynchronous Doubly-Fed Wind Turbine, 1st ed.; China Electric Power Press: Beijing, China, 2012; pp. 21–23. [Google Scholar]
- Zhao, X.; Peng, Z.; Tan, H.; Mao, Y.; Li, D. Sub-synchronous torsional interaction analysis of doubly-fed wind generator. Electric. Power Sci. Eng. 2018, 34, 12–17. [Google Scholar]
- Chen, P.; Qi, C.; Chen, X.; Chen, J.; Li, C. Frequency response modeling and parameter identification of doubly-Fed wind farm with additional frequency control. Trans. China Electrotech. Soc. 2021, 36, 3293–3307. [Google Scholar]
- Li, H.; Zhu, C.; Fan, Z.; Tan, Z.; Song, C. Research on maximum power point tracking strategy of wind turbine based second order sliding model-PID control. Acta Energ. Sol. Sin. 2022, 43, 306–314. [Google Scholar]
- Xiong, P.; Sun, D.; Tan, H.; Mao, Y.; Li, D. Backstepping-based DPC strategy of a wind turbine-driven DFIG under normal and harmonic grid voltage. IEEE Trans. Power Electron. 2016, 31, 4216–4225. [Google Scholar] [CrossRef]
- Ding, Y.; Kang, E.; Wang, S.; Chen, G.; Liu, F. Disturbance suppression for PMSM by a non-linear composite controller based on two-channel strategy. IET-EPA 2020, 14, 31–40. [Google Scholar] [CrossRef]
- Yang, J.; Cai, H.; Zou, Z.; Xu, W.; Wu, J. Chaotic motion analysis and decoupling adaptive backstepping control of doubly-fed wind power system. Acta Energ. Sol. Sin. 2019, 40, 3605–3612. [Google Scholar]
- Xia, W.; Wang, K.; Zhang, J.; Liu, D. Torque ripple suppression of permanent magnet synchronous motor with harmonic shaped rotors based on resonance controllers. Proc. CSEE 2019, 39, 5499–5508. [Google Scholar]
- Chen, J.; Diao, L.; Du, H.; Fu, Y.; Liu, Z. Research of auxiliary inverter control strategy based on new resonant controller. Trans. China Electrotech. Soc. 2013, 28, 107–119. [Google Scholar]
- Song, Y.; Nian, H. Integrated control strategy of DFIG based on vector resonant control under distorted grid voltage conditions. Trans. China Electrotech. Soc. 2014, 29, 187–199. [Google Scholar]
- Yang, D.; Peng, Z.; Liu, J.; Shao, D.; Wu, N. D-q current decoupling for single-phase grid-connected converter based on non-delay. Power. Syst. Technol. 2022, 46, 1585–1594. [Google Scholar]
- Xia, C.; Rahman, S.U.; Liu, Y. Analysis and design of current regulator stability during high-speed operation of permanent magnetic synchronous motor. Proc. CSEE 2020, 40, 303–312. [Google Scholar]
- Chen, L.; Zhu, C.; Wang, Z.; Mao, Y.; Li, D. Decoupling control for active magnetic bearing high-speed flywheel rotor based on mode separation and state feedback. Proc. CSEE 2017, 37, 5461–5472. [Google Scholar]
Parameter | Value | Parameter | Value |
---|---|---|---|
Rated power | 15 kW | 0.0022 H | |
Stator voltage | 200 V | Moment of inertia of the motor J | 0.39 Kg·m2 |
Mutual inductance resistance Lm | 0.0427 H | Pole logarithm of motor np | 3 |
Stator resistance Rs | 0.379 Ω | 400 V | |
0.0011 H | Inductance into the line Lg | 0.005 H | |
Rotor resistance Rr | 0.314 Ω | Motor magnetic flux leakage coefficient σ | 0.07288 |
Rated frequency | 50 Hz | DC bus capacitance C | 2200 μF |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, D.; Meng, F.; Shen, W. Study on Suppression Strategy for Broadband Sub-Synchronous Oscillation in Doubly-Fed Wind Power Generation System. Appl. Sci. 2022, 12, 8344. https://doi.org/10.3390/app12168344
Sun D, Meng F, Shen W. Study on Suppression Strategy for Broadband Sub-Synchronous Oscillation in Doubly-Fed Wind Power Generation System. Applied Sciences. 2022; 12(16):8344. https://doi.org/10.3390/app12168344
Chicago/Turabian StyleSun, Dongyang, Fanyi Meng, and Wenqiang Shen. 2022. "Study on Suppression Strategy for Broadband Sub-Synchronous Oscillation in Doubly-Fed Wind Power Generation System" Applied Sciences 12, no. 16: 8344. https://doi.org/10.3390/app12168344
APA StyleSun, D., Meng, F., & Shen, W. (2022). Study on Suppression Strategy for Broadband Sub-Synchronous Oscillation in Doubly-Fed Wind Power Generation System. Applied Sciences, 12(16), 8344. https://doi.org/10.3390/app12168344