Review on Compressive Sensing Algorithms for ECG Signal for IoT Based Deep Learning Framework
Abstract
:1. Introduction
1.1. Compressive Sensing
1.2. Need for CS in Bio Electric Signals
2. Overview of Compressive Sensing Algorithm
2.1. CS Data Acquisition
- Null Space Property
- Restricted Isometry Property (RIP) and
- Incoherence
2.2. Sensing Matrices in CS
2.3. Compressive Sensed Signal Reconstruction
2.4. CS Performance Metrics
3. Compressive Sensing for ECG Signal
- Coronary artery disease (Blood vessel disease)
- Arrhythmias, problems related to rhythm of Heart
- Congenital heart disease (defects at birth)
- Origination of arrhythmia in the heart
4. IoT Framework for Remote Patient Monitoring
5. Deep Learning & Data Analytics for Bio-Medical Signal
- Convolutional Neural Networks (CNNs)
- Long Short-Term Memory Networks (LSTMs)
- Recurrent Neural Networks (RNNs)
- Generative Adversarial Networks (GANs)
- Radial Basis Function Networks (RBFNs)
- Multilayer Perceptrons (MLPs)
- Self Organizing Maps (SOMs)
- Deep Belief Networks (DBNs)
- Restricted Boltzmann Machines (RBMs)
- Gated Recurrent Unit (GRU)
- Auto Encoder (AE)
- Variational Auto Encoder (VAE)
- Denoising Auto Encoder (DAE)
- Sparse Auto Encoder (SAE)
6. Detailed Review of CS Based ECG IoT Framework and Analysis
6.1. CS Implementations-Sensing and Sparsifying Matrices
6.2. Learning Algorithms on ECG
6.2.1. Learning on Reconstructed ECG Signal
6.2.2. Learning on Direct CS Measurements
6.3. CS Realtime Implementations and IoT Framework
6.4. Recommendations and Research Directions
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, N.; Madhavi, S.; Inderjit, S. The history, present and future with IoT. In Internet of Things an Big Data Analytics for Smart Generation; Springer: Cham, Switzerland, 2019; pp. 27–51. [Google Scholar]
- Ibarra-Esquer, J.E.; González-Navarro, F.F.; Flores-Rios, B.L.; Burtseva, L.; Astorga-Vargas, M.A. Tracking the evolution of the internet of things concept across different application domains. Sensors 2017, 17, 1379. [Google Scholar] [CrossRef] [PubMed]
- Djelouat, H.; Amira, A.; Bensaali, F. Compressive sensing-based IoT applications: A review. J. Sens. Actuator Netw. 2018, 7, 45. [Google Scholar] [CrossRef] [Green Version]
- Djelouat, H.; Zhai, X.; Al Disi, M.; Amira, A.; Bensaali, F. System-on-chip solution for patients biometric: A compressive sensing-based approach. IEEE Sens. J. 2018, 18, 9629–9639. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Papagiannidis, S.; Alamanos, E. Internet of Things: A systematic review of the business literature from the user and organisational perspectives. Technol. Forecast. Soc. Change 2018, 136, 285–297. [Google Scholar] [CrossRef] [Green Version]
- Chou, C.Y.; Chang, E.J.; Li, H.T.; Wu, A.Y. Low-complexity privacy-preserving compressive analysis using subspace-based dictionary for ECG telemonitoring system. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 801–811. [Google Scholar]
- Picariello, F.; Iadarola, G.; Balestrieri, E.; Tudosa, I.; De Vito, L. A novel compressive sampling method for ECG wearable measurement systems. Measurement 2021, 167, 108259. [Google Scholar] [CrossRef]
- Aziz, A.; Singh, K.; Osamy, W.; Khedr, A.M. Effective algorithm for optimizing compressive sensing in IoT and periodic monitoring applications. J. Netw. Comput. Appl. 2019, 126, 12–28. [Google Scholar] [CrossRef]
- Unde, A.S.; Deepthi, P.P. Design and analysis of compressive sensing-based lightweight encryption scheme for multimedia IoT. IEEE Trans. Circuits Syst. II Express Briefs 2019, 67, 167–171. [Google Scholar] [CrossRef]
- Mei, Y.; Gao, Z.; Wu, Y.; Chen, W.; Zhang, J.; Ng DW, K.; Di Renzo, M. Compressive sensing based joint activity and data detection for grant-free massive IoT access. IEEE Trans. Wirel. Commun. 2021, 21, 1851–1869. [Google Scholar] [CrossRef]
- Al Disi, M.; Djelouat, H.; Kotroni, C.; Politis, E.; Amira, A.; Bensaali, F.; Alinier, G. ECG signal reconstruction on the IoT-gateway and efficacy of compressive sensing under real-time constraints. IEEE Access 2018, 6, 69130–69140. [Google Scholar] [CrossRef]
- Rani, M.; Dhok, S.B.; Deshmukh, R.B. A systematic review of compressive sensing: Concepts, implementations and applications. IEEE Access 2018, 6, 4875–4894. [Google Scholar] [CrossRef]
- Mishra, I.; Jain, S. Soft computing based compressive sensing techniques in signal processing: A comprehensive review. J. Intell. Syst. 2021, 30, 312–326. [Google Scholar] [CrossRef]
- Compressed Sensing-Or: The equation Ax=b, Revisited. Available online: https://wordpress.com/ (accessed on 5 March 2022).
- Eldar, Y.C.; Kutyniok, G. (Eds.) Compressed Sensing: Theory and Applications; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Rivenson, Y.; Stern, A.; Javidi, B. Overview of compressive sensing techniques applied in holography. Appl. Opt. 2013, 52, A423–A432. [Google Scholar] [CrossRef]
- Nahar, P.C.; Kolte, M.T. An introduction to compressive sensing and its applications. Int. J. Sci. Res. Publ. 2014, 4, 2250–3153. [Google Scholar]
- Optimization Algorithms for Compressed Sensing. Available online: https://www.wisc.edu/ (accessed on 15 February 2022).
- Divekar, A. Theory and Applications of Compressive Sensing. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 2010. [Google Scholar]
- Stanković, L.; Sejdić, E.; Stanković, S.; Daković, M.; Orović, I. A tutorial on sparse signal reconstruction and its applications in signal processing. Circuits Syst. Signal Processing 2019, 38, 1206–1263. [Google Scholar] [CrossRef]
- Zhang, Y. On Theory of Compressive Sensing via L_1-Minimization: Simple Derivations and Extensions; 2008. Available online: https://link.springer.com/article/10.1007/s40305-013-0010-2 (accessed on 12 April 2022).
- Baraniuk, R.G. Compressive sensing [lecture notes]. IEEE Signal Processing Mag. 2007, 24, 118–121. [Google Scholar] [CrossRef]
- Candès, E.J.; Wakin, M.B. An Introduction to Compressive Sampling. IEEE Signal Process. Mag. 2008, 25, 21–30. [Google Scholar] [CrossRef]
- Foucart, S.; Holger, R. An invitation to compressive sensing. In A Mathematical Introduction to Compressive Sensing; Birkhäuser: New York, NY, USA, 2013; pp. 1–39. [Google Scholar]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Li, S.; Da Xu, L.; Wang, X. A continuous biomedical signal acquisition system based on compressed sensing in body sensor networks. IEEE Trans. Ind. Inform. 2013, 9, 1764–1771. [Google Scholar] [CrossRef]
- Bortolotti, D.; Mangia, M.; Bartolini, A.; Rovatti, R.; Setti, G.; Benini, L. Energy-aware bio-signal compressed sensing reconstruction on the WBSN-gateway. IEEE Trans. Emerg. Top. Comput. 2016, 6, 370–381. [Google Scholar] [CrossRef]
- Gogna, A.; Majumdar, A.; Ward, R. Semi-supervised stacked label consistent autoencoder for reconstruction and analysis of biomedical signals. IEEE Trans. Biomed. Eng. 2016, 64, 2196–2205. [Google Scholar] [CrossRef] [Green Version]
- Braojos, R.; Mamaghanian, H.; Dias, A.; Ansaloni, G.; Atienza, D.; Rincón, F.J.; Murali, S. Ultra-low power design of wearable cardiac monitoring systems. In Proceedings of the 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 1–5 June 2014; pp. 1–6. [Google Scholar]
- Van Helleputte, N.; Tomasik, J.M.; Galjan, W.; Mora-Sanchez, A.; Schroeder, D.; Krautschneider, W.H.; Puers, R. A flexible system-on-chip (SoC) for biomedical signal acquisition and processing. Sens. Actuators A Phys. 2008, 142, 361–368. [Google Scholar] [CrossRef]
- Mamaghanian, H.; Khaled, N.; Atienza, D.; Vandergheynst, P. Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes. IEEE Trans. Biomed. Eng. 2011, 58, 2456–2466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egger, M.; Ley, M.; Hanke, S. Emotion recognition from physiological signal analysis: A review. Electron. Notes Theor. Comput. Sci. 2019, 343, 35–55. [Google Scholar] [CrossRef]
- Dixon, A.M.; Allstot, E.G.; Gangopadhyay, D.; Allstot, D.J. Compressed sensing system considerations for ECG and EMG wireless biosensors. IEEE Trans. Biomed. Circuits Syst. 2012, 6, 156–166. [Google Scholar] [CrossRef]
- Fornasier, M.; Holger, R. Compressive Sensing. Handb. Math. Methods Imaging 2015, 1, 187–229. [Google Scholar]
- Ji, S.; Xue, Y.; Carin, L. Bayesian compressive sensing. IEEE Trans. Signal Processing 2008, 56, 2346–2356. [Google Scholar] [CrossRef]
- Candès, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef] [Green Version]
- Candes, E.; Romberg, J. l1-Magic: Recovery of Sparse Signals via Convex Programming. 2005. Available online: https://www.acm.caltech.edu/l1magic/downloads/l1magic.pdf (accessed on 14 March 2022).
- Candès, E.J.; Recht, B. Exact matrix completion via convex optimization. Found. Comput. Math. 2009, 9, 717–772. [Google Scholar] [CrossRef] [Green Version]
- Candes, E.J.; Wakin, M.B.; Boyd, S.P. Enhancing sparsity by reweighted ℓ 1 minimization. J. Fourier Anal. Appl. 2008, 14, 877–905. [Google Scholar] [CrossRef]
- Candes, E.J.; Romberg, J.K.; Tao, T. Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. A J. Issued by Courant Inst. Math. Sci. 2006, 59, 1207–1223. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.L.; Shin, Y. Deterministic sensing matrices in compressive sensing: A survey. Sci. World J. 2013, 2013, 192795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abo-Zahhad, M.M.; Hussein, A.I.; Mohamed, A.M. Compressive sensing algorithms for signal processing applications: A survey. Int. J. Commun. Netw. Syst. Sci. 2015, 8, 197. [Google Scholar]
- Qaisar, S.; Bilal, R.M.; Iqbal, W.; Naureen, M.; Lee, S. Compressive sensing: From theory to applications, a survey. J. Commun. Netw. 2013, 15, 443–456. [Google Scholar] [CrossRef]
- Jie, Y.; Guo, C.; Li, M.; Feng, B. Construction of compressed sensing matrices for signal processing. Multimed. Tools Appl. 2018, 77, 30551–30574. [Google Scholar] [CrossRef]
- Selesnick, I. Introduction to Sparsity in Signal Processing; Polytechnic Institute of New York University: New York, NY, USA, 2012; Available online: http://cnx.org/content/m43545/1.3/ (accessed on 23 April 2022).
- Gao, Y.; Peng, J.; Yue, S.; Zhao, Y. On the null space property of-minimization for in compressed sensing. J. Funct. Spaces 2015, 2015, 579853. [Google Scholar]
- Candes, E.J. The restricted isometry property and its implications for compressed sensing. Comptes Rendus Math. 2008, 346, 589–592. [Google Scholar] [CrossRef]
- Candes, E.; Romberg, J. Sparsity and incoherence in compressive sampling. Inverse Probl. 2007, 23, 969. [Google Scholar] [CrossRef] [Green Version]
- Canh, T.N.; Jeon, B. Restricted structural random matrix for compressive sensing. Signal Processing Image Commun. 2021, 90, 116017. [Google Scholar] [CrossRef]
- Horn, R.A.; Johnson, C.R. Matrix Analysis; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Rauhut, H. Compressive sensing and structured random matrices. Theor. Found. Numer. Methods Sparse Recovery 2010, 9, 92. [Google Scholar]
- Parkale, Y.V.; Nalbalwar, S.L. Sensing Matrices in Compressed Sensing. In Computing in Engineering and Technology; Springer: Singapore, 2020; pp. 113–123. [Google Scholar]
- Arjoune, Y.; Kaabouch, N.; El Ghazi, H.; Tamtaoui, A. A performance comparison of measurement matrices in compressive sensing. Int. J. Commun. Syst. 2018, 31, e3576. [Google Scholar] [CrossRef]
- Stanković, S.; Ioana, C.; Li, X.; Papic, V. Algorithms for compressive sensing signal reconstruction with applications. Math. Probl. Eng. 2016, 2016, 8376531. [Google Scholar] [CrossRef]
- Carrillo, R.E.; Ramirez, A.B.; Arce, G.R.; Barner, K.E.; Sadler, B.M. Robust compressive sensing of sparse signals: A review. EURASIP J. Adv. Signal Processing 2016, 2016, 108. [Google Scholar] [CrossRef] [Green Version]
- Orović, I.; Lekić, N.; Beko, M.; Stanković, S. An analog hardware solution for compressive sensing reconstruction using gradient-based method. EURASIP J. Adv. Signal Processing 2019, 2019, 61. [Google Scholar] [CrossRef]
- Orović, I.; Papić, V.; Ioana, C.; Li, X.; Stanković, S. Compressive sensing in signal processing: Algorithms and transform domain formulations. Math. Probl. Eng. 2016, 2016, 7616393. [Google Scholar] [CrossRef] [Green Version]
- Liquan, Z.; Ke, M.; Yanfei, J. Improved generalized sparsity adaptive matching pursuit algorithm based on compressive sensing. J. Electr. Comput. Eng. 2020, 2020, 2782149. [Google Scholar] [CrossRef] [Green Version]
- Baraniuk, R.; Davenport, M.A.; Duarte, M.F.; Hegde, C. An Introduction to Compressive Sensing. 2014. Available online: https://scholarship.rice.edu/bitstream/handle/1911/112302/col11133-FINAL.pdf?sequence=1 (accessed on 27 May 2022).
- Pope, G. Compressive sensing: A Summary of Reconstruction Algorithms. Master’s Thesis, ETH, Swiss Federal Institute of Technology Zurich, Department of Computer Science, Zürich, Switzerland, 2009. [Google Scholar]
- Pilastri, A.L.; Tavares JM, R. Reconstruction algorithms in compressive sensing: An overview. In Proceedings of the 11th Edition of the Doctoral Symposium in Informatics Engineering (DSIE-16), Porto, Portugal, 2 February 2016. [Google Scholar]
- Meenakshi, S.B. A survey of compressive sensing based greedy pursuit reconstruction algorithms. Int. J. Image Graph. Signal Processing 2015, 7, 1–10. [Google Scholar]
- Howard, S.D.; Calderbank, A.R.; Searle, S.J. A fast reconstruction algorithm for deterministic compressive sensing using second order Reed-Muller codes. In Proceedings of the 2008 42nd Annual Conference on Information Sciences and Systems, Princeton, NJ, USA, 19–21 March 2008; pp. 11–15. [Google Scholar]
- Bregman Method—Wikipedia. Available online: https://en.wikipedia.org/wiki/Bregman_method (accessed on 18 May 2022).
- Manchanda, R.; Sharma, K. A Review of Reconstruction Algorithms in Compressive Sensing. In Proceedings of the 2020 International Conference on Advances in Computing, Communication & Materials (ICACCM), Dehradun, India, 21–22 August 2020; pp. 322–325. [Google Scholar]
- Shen, Y.; Li, J.; Zhu, Z.; Cao, W.; Song, Y. Image reconstruction algorithm from compressed sensing measurements by dictionary learning. Neurocomputing 2015, 151, 1153–1162. [Google Scholar] [CrossRef]
- Hu, L.; Zhou, J.; Shi, Z.; Fu, Q. A fast and accurate reconstruction algorithm for compressed sensing of complex sinusoids. IEEE Trans. Signal Processing 2013, 61, 5744–5754. [Google Scholar] [CrossRef]
- Cormode, G.; Muthukrishnan, S. Combinatorial algorithms for compressed sensing. In International Colloquium on Structural Information and Communication Complexity; Springer: Berlin/Heidelberg, Germany, 2006; pp. 280–294. [Google Scholar]
- Pant, J.K.; Lu, W.S.; Antoniou, A. New Improved Algorithms for Compressive Sensing Based on ℓp Norm. IEEE Trans. Circuits Syst. II Express Briefs 2014, 61, 198–202. [Google Scholar] [CrossRef]
- Stanković, S.; Orović, I.; Amin, M. L-statistics based modification of reconstruction algorithms for compressive sensing in the presence of impulse noise. Signal Processing 2013, 93, 2927–2931. [Google Scholar] [CrossRef]
- Li, L.; Fang, Y.; Liu, L.; Peng, H.; Kurths, J.; Yang, Y. Overview of compressed sensing: Sensing model, reconstruction algorithm, and its applications. Appl. Sci. 2020, 10, 5909. [Google Scholar] [CrossRef]
- Chen, S.; Donoho, D. Basis pursuit. In Proceedings of the 1994 28th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 31 October–2 November 1994; Volume 1, pp. 41–44. [Google Scholar]
- Van Den Berg, E.; Friedlander, M.P. Probing the Pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput. 2009, 31, 890–912. [Google Scholar] [CrossRef] [Green Version]
- Rakotomamonjy, A. Algorithms for multiple basis pursuit denoising. In Proceedings of the SPARS’09-Signal Processing with Adaptive Sparse Structured Representations, St. Malo, France, 6–9 April 2009. [Google Scholar]
- Hale, E.T.; Yin, W.; Zhang, Y. Fixed-point continuation for ℓ1-Minimization: Methodology and convergence. SIAM J. Optim. 2008, 19, 1107–1130. [Google Scholar] [CrossRef]
- Lee, H.; Battle, A.; Raina, R.; Ng, A. Efficient sparse coding algorithms. In Advances in Neural Information Processing Systems 19; MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Yang, J.; Peng, Y.; Xu, W.; Dai, Q. Ways to sparse representation: An overview. Sci. China Ser. F Inf. Sci. 2009, 52, 695–703. [Google Scholar] [CrossRef]
- Vince, A. A framework for the greedy algorithm. Discret. Appl. Math. 2002, 121, 247–260. [Google Scholar] [CrossRef] [Green Version]
- Dilworth, S.J.; Kalton, N.J.; Kutzarova, D.; Temlyakov, V.N. The Thresholding Greedy Algorithm, Greedy Bases and Duality; South Carolina University Columbia Dept of Mathematics: Columbia, SC, USA, 2001. [Google Scholar]
- Wang, D.; Han, Z. Basics for sublinear algorithms. In Sublinear Algorithms for Big Data Applications; Springer: Cham, Switzerland, 2015; pp. 9–21. [Google Scholar]
- Burer, S.; Letchford, A.N. Non-convex mixed-integer nonlinear programming: A survey. Surv. Oper. Res. Manag. Sci. 2012, 17, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Bush, J. Bregman Algorithms. Bachelor’s Thesis, University of California, Santa Barbara, CA, USA, 2011. [Google Scholar]
- Yin, W.; Osher, S.; Goldfarb, D.; Darbon, J. Bregman iterative algorithms for ℓ1-Minimizationwith applications to compressed sensing. SIAM J. Imaging Sci. 2008, 1, 143–168. [Google Scholar] [CrossRef] [Green Version]
- Khosravy, M.; Gupta, N.; Patel, N.; Duque, C.A. Recovery in compressive sensing: A review. Compressive Sens. Healthc. 2020, 25–42. Available online: https://www.sciencedirect.com/science/article/pii/B9780128212479000202 (accessed on 5 March 2022).
- Movahed, A.; Panahi, A.; Durisi, G. A robust RFPI-based 1-bit compressive sensing reconstruction algorithm. In Proceedings of the 2012 IEEE Information Theory Workshop, Lausanne, Switzerland, 3–7 September 2012; pp. 567–571. [Google Scholar]
- Maleki, A.; Donoho, D.L. Optimally tuned iterative reconstruction algorithms for compressed sensing. IEEE J. Sel. Top. Signal Processing 2010, 4, 330–341. [Google Scholar] [CrossRef] [Green Version]
- Marques, E.C.; Maciel, N.; Naviner, L.; Cai, H.; Yang, J. A review of sparse recovery algorithms. IEEE Access 2018, 7, 1300–1322. [Google Scholar] [CrossRef]
- Draganic, A.; Orovic, I.; Stankovic, S. On some common compressive sensing recovery algorithms and applications-Review paper. arXiv 2017, arXiv:1705.05216. [Google Scholar]
- Bazzi, A.; Slock, D.T.; Meilhac, L.; Panneerselvan, S. A comparative study of sparse recovery and compressed sensing algorithms with application to AoA estimation. In Proceedings of the 2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Edinburgh, UK, 3–6 July 2016; pp. 1–5. [Google Scholar]
- Kumar, R.; Kumar, A.; Pandey, R.K. Pandey. Beta wavelet based ECG signal compression using lossless encoding with modified thresholding. Comput. Electr. Eng. 2013, 39, 130–140. [Google Scholar] [CrossRef]
- DeVore, R.A. Deterministic constructions of compressed sensing matrices. J. Complex. 2007, 23, 918–925. [Google Scholar] [CrossRef] [Green Version]
- Forbes, A.D. Classification-algorithm evaluation: Five performance measures based on confusion matrices. J. Clin. Monit. 1995, 11, 189–206. [Google Scholar] [CrossRef]
- Tharwat, A. Classification assessment methods. Appl. Comput. Inform. 2020, 17, 168–192. [Google Scholar] [CrossRef]
- Zhuang, X.; Engel, B.A.; Xiong, X.; Johannsen, C.J. Analysis of classification results of remotely sensed data and evaluation of classification algorithms. Photogramm. Eng. Remote Sens. 1995, 61, 427–432. [Google Scholar]
- Smits, P.C.; Dellepiane, S.G.; Schowengerdt, R.A. Quality assessment of image classification algorithms for land-cover mapping: A review and a proposal for a cost-based approach. Int. J. Remote Sens. 1999, 20, 1461–1486. [Google Scholar] [CrossRef]
- Hussain, J.; Lalmuanawma, S. Feature analysis, evaluation and comparisons of classification algorithms based on noisy intrusion dataset. Procedia Comput. Sci. 2016, 92, 188–198. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Zhu, W.P.; Swamy, M.N.S. A compressive sensing method for noise reduction of speech and audio signals. In Proceedings of the 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS), Seoul, Korea, 7–10 August 2011; pp. 1–4. [Google Scholar]
- Gemmeke, J.F.; Van Hamme, H.; Cranen, B.; Boves, L. Compressive sensing for missing data imputation in noise robust speech recognition. IEEE J. Sel. Top. Signal Processing 2010, 4, 272–287. [Google Scholar] [CrossRef] [Green Version]
- Stanković, S.; Orović, I. An approach to 2D signals recovering in compressive sensing context. Circuits Syst. Signal Processing 2017, 36, 1700–1713. [Google Scholar] [CrossRef] [Green Version]
- Bernard, C.; Ioana, C.; Orovic, I.; Stankovic, S. Analysis of underwater signals with nonlinear time-frequency structures using warping-based compressive sensing algorithm. In Proceedings of the OCEANS 2015-MTS/IEEE Washington, Washington, DC, USA, 19–22 October 2015; pp. 1–7. [Google Scholar]
- Zhou, S.; Chen, Z.; Zhong, Q.; Li, H. Block compressed sampling of image signals by saliency based adaptive partitioning. Multimed. Tools Appl. 2019, 78, 537–553. [Google Scholar] [CrossRef]
- Eslahi, N.; Aghagolzadeh, A. Compressive sensing image restoration using adaptive curvelet thresholding and nonlocal sparse regularization. IEEE Trans. Image Processing 2016, 25, 3126–3140. [Google Scholar] [CrossRef] [PubMed]
- Medenica, M.; Zukovic, S.; Draganic, A.; Orovic, I.; Stankovic, S. Comparison of the algorithms for CS image reconstruction. ETF J. Electr. Eng. 2014, 20, 29–39. [Google Scholar]
- Li, R.; He, W.; Liu, Z.; Li, Y.; Fu, Z. Saliency-based adaptive compressive sampling of images using measurement contrast. Multimed. Tools Appl. 2018, 77, 12139–12156. [Google Scholar] [CrossRef]
- Costanzo, S.; Rocha, Á.; Migliore, M.D. Compressed sensing: Applications in radar and communications. Sci. World J. 2016, 2016, 5407415. [Google Scholar] [CrossRef] [Green Version]
- Potter, L.C.; Ertin, E.; Parker, J.T.; Cetin, M. Sparsity and compressed sensing in radar imaging. Proc. IEEE 2010, 98, 1006–1020. [Google Scholar] [CrossRef]
- Ender, J.H.G. On compressive sensing applied to radar. Signal Processing 2010, 90, 1402–1414. [Google Scholar] [CrossRef]
- Qiao, L.; Chen, S.; Tan, X. Sparsity preserving projections with applications to face recognition. Pattern Recognit. 2010, 43, 331–341. [Google Scholar] [CrossRef] [Green Version]
- Bhateja, A.K.; Sharma, S.; Chaudhury, S.; Agrawal, N. Iris recognition based on sparse representation and k-nearest subspace with genetic algorithm. Pattern Recognit. Lett. 2016, 73, 13–18. [Google Scholar] [CrossRef]
- Akl, A.; Feng, C.; Valaee, S. A novel accelerometer-based gesture recognition system. IEEE Trans. Signal Processing 2011, 59, 6197–6205. [Google Scholar] [CrossRef] [Green Version]
- Wright, J.; Ma, Y.; Mairal, J.; Sapiro, G.; Huang, T.S.; Yan, S. Sparse representation for computer vision and pattern recognition. Proc. IEEE 2010, 98, 1031–1044. [Google Scholar] [CrossRef] [Green Version]
- Veeraraghavan, A.; Reddy, D.; Raskar, R. Coded strobing photography: Compressive sensing of high speed periodic videos. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 671–686. [Google Scholar] [CrossRef]
- Edgar, M.P.; Sun, M.J.; Gibson, G.M.; Spalding, G.C.; Phillips, D.B.; Padgett, M.J. Real-time 3D video utilizing a compressed sensing time-of-flight single-pixel camera. In Optical Trapping and Optical Micromanipulation XIII; SPIE: Bellingham, DC, USA, 2016; Volume 9922, pp. 171–178. [Google Scholar]
- Torruella, P.; Arenal, R.; De La Peña, F.; Saghi, Z.; Yedra, L.; Eljarrat, A.; Estradé, S. 3D visualization of the iron oxidation state in FeO/Fe3O4 core–shell nano cubes from electron energy loss tomography. Nano Lett. 2016, 16, 5068–5073. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Li, X.; Liu, F.; Acar, E.; Rutenbar, R.A.; Blanton, R.D. Virtual probe: A statistical framework for low-cost silicon characterization of nanoscale integrated circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2011, 30, 1814–1827. [Google Scholar] [CrossRef] [Green Version]
- Liao, C.; Tao, J.; Zeng, X.; Su, Y.; Zhou, D.; Li, X. Efficient spatial variation modeling of nanoscale integrated circuits via hidden Markov tree. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2015, 35, 971–984. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, H.; Zhang, M.; Richardson, A.G.; Lucas, T.H.; Van der Spiegel, J. Design of a low-noise, high power efficiency neural recording front-end with an integrated real-time compressed sensing unit. In Proceedings of the 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 24–27 May 2015; pp. 2996–2999. [Google Scholar]
- Craven, D.; McGinley, B.; Kilmartin, L.; Glavin, M.; Jones, E. Compressed sensing for bioelectric signals: A review. IEEE J. Biomed. Health Inform. 2014, 19, 529–540. [Google Scholar] [CrossRef]
- Kowsalya, G.; Christinal, H.; Chandy, D.A.; Jebasingh, S.; Bajaj, C. Analysis of The impact of Measurement Matrices in Compressive Sensing for Medical Images. Adv. Math. Sci. J. 2020, 9, 591–600. [Google Scholar] [CrossRef]
- Amir, A.; Zuk, O. Bacterial community reconstruction using compressed sensing. J. Comput. Biol. 2011, 18, 1723–1741. [Google Scholar] [CrossRef]
- Tang, W.; Cao, H.; Duan, J.; Wang, Y.P. A compressed sensing based approach for subtyping of leukemia from gene expression data. J. Bioinform. Comput. Biol. 2011, 9, 631–645. [Google Scholar] [CrossRef] [Green Version]
- Dai, W.; Sheikh, M.A.; Milenkovic, O.; Baraniuk, R.G. Compressive sensing DNA microarrays. EURASIP J. Bioinform. Syst. Biol. 2008, 2009, 162824. [Google Scholar] [CrossRef] [Green Version]
- Shukla, A.; Majumdar, A. Row-sparse blind compressed sensing for reconstructing multi-channel EEG signals. Biomed. Signal Processing Control 2015, 18, 174–178. [Google Scholar] [CrossRef]
- Davies, A.; Alwyn, S. ECG Basics. In Starting to Read ECGs; Springer: London, UK, 2014; pp. 19–33. [Google Scholar]
- Sampson, M.; McGrath, A. Understanding the ECG Part 2: ECG basics. Br. J. Card. Nurs. 2015, 10, 588–594. [Google Scholar] [CrossRef] [Green Version]
- Stroobandt, R.X.; Barold, S.S.; Sinnaeve, A.F. Serge Barold, and Alfons F. Sinnaeve. ECG from Basics to Essentials: Step by Step; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Mozos, I.; Stoian, D. Signal-averaged ECG: Basics to current issues. In Interpreting Cardiac Electrograms-From Skin to Endocardium; IntechOpen: London, UK, 2017. [Google Scholar]
- Chodankar, N.N.; Ohn, M.H.; Dsouza, U.J.A. Basics of electrocardiogram (ECG) and its application in diagnosis of heart ailments: An educational series. Borneo J. Med. Sci. BJMS 2018, 12, 3. [Google Scholar]
- Elbaih, A.H.; Alkhalaf, M.M. Assessment of tachyarrhythmias–ECG basics and common pitfalls in diagnosis. South Asian J. Emerg. Med. 2020, 3, 31–41. [Google Scholar] [CrossRef]
- Jones, S.A. ECG Notes: Interpretation and Management Guide; FA Davis: Philadelphia, PA, USA, 2021. [Google Scholar]
- ECG Timeline-History of the Electrocardiogram. Available online: https://ecglibrary.com/ecghome.php (accessed on 18 April 2022).
- Medicine & Health: History of the ECG Machine. Available online: https://zaeer.blogspot.com/ (accessed on 21 April 2022).
- Jin, H.; Lyon, A.R.; Akar, F.G. Arrhythmia mechanisms in the failing heart. Pacing Clin. Electrophysiol. 2008, 31, 1048–1056. [Google Scholar] [CrossRef]
- Sung, R.J.; Michael, R.L. Fundamental Approaches to the Management of Cardiac Arrhythmias; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Shinya, Y.; Kawai, M.; Niwa, F.; Myowa-Yamakoshi, M. Associations between respiratory arrhythmia and fundamental frequency of spontaneous crying in preterm and term infants at term-equivalent age. Dev. Psychobiol. 2016, 58, 724–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nattel, S.; Burstein, B.; Dobrev, D. Atrial remodeling and atrial fibrillation: Mechanisms and implications. Circ. Arrhythmia Electrophysiol. 2008, 1, 62–73. [Google Scholar] [CrossRef] [Green Version]
- LaRosa, A.R.; Pusateri, A.M.; Althouse, A.D.; Mathier, A.S.; Essien, U.R.; Magnani, J.W. Mind the gap: Deficits in fundamental disease-specific knowledge in atrial fibrillation. Int. J. Cardiol. 2019, 292, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Somani, S.; Russak, A.J.; Richter, F.; Zhao, S.; Vaid, A.; Chaudhry, F.; Glicksberg, B.S. Deep learning and the electrocardiogram: Review of the current state-of-the-art. EP Eur. 2021, 23, 1179–1191. [Google Scholar] [CrossRef] [PubMed]
- Grün, D.; Rudolph, F.; Gumpfer, N.; Hannig, J.; Elsner, L.K.; von Jeinsen, B.; Keller, T. Identifying heart failure in ECG data with artificial intelligence—A meta-analysis. Front. Digit. Health 2021, 2, 584555. [Google Scholar] [CrossRef] [PubMed]
- Dinakarrao, S.M.P.; Jantsch, A.; Shafique, M. Computer-aided arrhythmia diagnosis with bio-signal processing: A survey of trends and techniques. ACM Comput. Surv. CSUR 2019, 52, 1–37. [Google Scholar] [CrossRef]
- Sahoo, S.; Dash, M.; Behera, S.; Sabut, S. Machine learning approach to detect cardiac arrhythmias in ECG signals: A survey. Irbm 2020, 41, 185–194. [Google Scholar] [CrossRef]
- Mahdi, M.S.; Hassan, N.F. A proposed lossy image compression based on multiplication table. Kurd. J. Appl. Res. 2017, 2, 98–102. [Google Scholar] [CrossRef] [Green Version]
- Jayasankar, U.; Thirumal, V.; Ponnurangam, D. A survey on data compression techniques: From the perspective of data quality, coding schemes, data type and applications. J. King Saud Univ. Comput. Inf. Sci. 2021, 33, 119–140. [Google Scholar] [CrossRef]
- Elgendi, M.; Mohamed, A.; Ward, R. Efficient ECG compression and QRS detection for e-health applications. Sci. Rep. 2017, 7, 459. [Google Scholar] [CrossRef]
- Xu, G. IoT-assisted ECG monitoring framework with secure data transmission for health care applications. IEEE Access 2020, 8, 74586–74594. [Google Scholar] [CrossRef]
- Ramesh, G.P.; Kumar, N.M. Design of RZF antenna for ECG monitoring using IoT. Multimed. Tools Appl. 2020, 79, 4011–4026. [Google Scholar] [CrossRef]
- Wu, T.; Redouté, J.M.; Yuce, M. A wearable, low-power, real-time ECG monitor for smart t-shirt and IoT healthcare applications. In Advances in Body Area Networks I; Springer: Cham, Switzerland, 2019; pp. 165–173. [Google Scholar]
- Gia, T.N.; Jiang, M.; Rahmani, A.M.; Westerlund, T.; Liljeberg, P.; Tenhunen, H. Fog computing in healthcare internet of things: A case study on ecg feature extraction. In Proceedings of the 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, Liverpool, UK, 26–28 October 2015; pp. 356–363. [Google Scholar]
- Deshpande, U.U.; Kulkarni, M.A. Iot based real time ecg monitoring system using cypress wiced. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 2017, 6. [Google Scholar] [CrossRef]
- Qin, Y.; Sheng, Q.Z.; Falkner, N.J.; Dustdar, S.; Wang, H.; Vasilakos, A.V. When things matter: A survey on data-centric internet of things. J. Netw. Comput. Appl. 2016, 64, 137–153. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Xu, H.; Liu, D.; Hu, B.; Wang, H. A vision of IoT: Applications, challenges, and opportunities with china perspective. IEEE Internet Things J. 2014, 1, 349–359. [Google Scholar] [CrossRef]
- Lee, G.M.; Park, J. The IoT—Concept and Problem Statement. In IETF Standard Draft-Lee-iot-Problem-Statement-05. 2012. Available online: https://hal.archives-ouvertes.fr/hal-00634616 (accessed on 28 April 2022).
- Stankovic, J.A. Research directions for the internet of things. IEEE Internet Things J. 2014, 1, 3–9. [Google Scholar] [CrossRef]
- Firouzi, F.; Farahani, B.; Weinberger, M.; DePace, G.; Aliee, F.S. IoT fundamentals: Definitions, architectures, challenges, and promises. In Intelligent Internet of Things; Springer: Cham, Switzerland, 2020; pp. 3–50. [Google Scholar]
- Yang, Z.; Zhou, Q.; Lei, L.; Zheng, K.; Xiang, W. An IoT-cloud based wearable ECG monitoring system for smart healthcare. J. Med. Syst. 2016, 40, 286. [Google Scholar] [CrossRef]
- Satija, U.; Ramkumar, B.; Manikandan, M.S. Real-time signal quality-aware ECG telemetry system for IoT-based health care monitoring. IEEE Internet Things J. 2017, 4, 815–823. [Google Scholar] [CrossRef]
- Devi, R.L.; Kalaivani, V. Machine learning and IoT-based cardiac arrhythmia diagnosis using statistical and dynamic features of ECG. J. Supercomput. 2020, 76, 6533–6544. [Google Scholar] [CrossRef]
- Zhao, Y.; Cheng, J.; Zhang, P.; Peng, X. ECG classification using deep CNN improved by wavelet transform. Comput. Mater. Contin. 2020, 64, 1615–1628. [Google Scholar] [CrossRef]
- Zhai, X.; Tin, C. Automated ECG classification using dual heartbeat coupling based on convolutional neural network. IEEE Access 2018, 6, 27465–27472. [Google Scholar] [CrossRef]
- Li, Y.; Pang, Y.; Wang, J.; Li, X. Patient-specific ECG classification by deeper CNN from generic to dedicated. Neurocomputing 2018, 314, 336–346. [Google Scholar] [CrossRef]
- Ebrahimi, Z.; Loni, M.; Daneshtalab, M.; Gharehbaghi, A. A review on deep learning methods for ECG arrhythmia classification. Expert Syst. Appl. X 2020, 7, 100033. [Google Scholar] [CrossRef]
- Ji, Y.; Zhang, S.; Xiao, W. Electrocardiogram classification based on faster regions with convolutional neural network. Sensors 2019, 19, 2558. [Google Scholar] [CrossRef] [Green Version]
- Al Rahhal, M.M.; Bazi, Y.; Al Zuair, M.; Othman, E.; BenJdira, B. Convolutional neural networks for electrocardiogram classification. J. Med. Biol. Eng. 2018, 38, 1014–1025. [Google Scholar] [CrossRef]
- Liu, X.; Wang, H.; Li, Z.; Qin, L. Deep learning in ECG diagnosis: A review. Knowl. Based Syst. 2021, 227, 107187. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y. Convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Netw. 1995, 3361, 1995. [Google Scholar]
- Zemouri, R.; Zerhouni, N.; Racoceanu, D. Deep Learning in the biomedical applications: Recent and future status. Appl. Sci. 2019, 9, 1526. [Google Scholar] [CrossRef] [Green Version]
- Avanzato, R.; Beritelli, F. Automatic ECG diagnosis using convolutional neural network. Electronics 2020, 9, 951. [Google Scholar] [CrossRef]
- Baloglu, U.B.; Talo, M.; Yildirim, O.; San Tan, R.; Acharya, U.R. Classification of myocardial infarction with multi-lead ECG signals and deep CNN. Pattern Recognit. Lett. 2019, 122, 23–30. [Google Scholar] [CrossRef]
- Murat, F.; Yildirim, O.; Talo, M.; Baloglu, U.B.; Demir, Y.; Acharya, U.R. Application of deep learning techniques for heartbeats detection using ECG signals-analysis and review. Comput. Biol. Med. 2020, 120, 103726. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Zhou, Y.; Shang, J.; Xiao, C.; Sun, J. Opportunities and challenges of deep learning methods for electrocardiogram data: A systematic review. Comput. Biol. Med. 2020, 122, 103801. [Google Scholar] [CrossRef] [PubMed]
- CNN Architectures: LeNet, AlexNet, VGG, GoogLeNet, ResNet and More-coderz.py. Available online: https://coderzpy.com/ (accessed on 23 April 2022).
- Bhatt, D.; Patel, C.; Talsania, H.; Patel, J.; Vaghela, R.; Pandya, S.; Ghayvat, H. CNN Variants for Computer Vision: History, Architecture, Application, Challenges and Future Scope. Electronics 2021, 10, 2470. [Google Scholar] [CrossRef]
- Ghosh, A.; Sufian, A.; Sultana, F.; Chakrabarti, A.; De, D. Fundamental concepts of convolutional neural network. In Recent Trends and Advances in Artificial Intelligence and INTERNET of Things; Springer: Cham, Switzerland, 2020; pp. 519–567. [Google Scholar]
- Wani, M.A.; Bhat, F.A.; Afzal, S.; Khan, A.I. Basics of supervised deep learning. In Advances in Deep Learning; Springer: Singapore, 2020; pp. 13–29. [Google Scholar]
- Thilagavathy, R.; Venkataramani, B. A novel ECG signal compression using wavelet and discrete anamorphic stretch transforms. Biomed. Signal Processing Control. 2022, 71, 102773. [Google Scholar]
- Mohammadi, F.; Sheikhani, A.; Razzazi, F.; Sharif, A.G. Non-invasive localization of the ectopic foci of focal atrial tachycardia by using ECG signal based sparse decomposition algorithm. Biomed. Signal Processing Control. 2021, 70, 103014. [Google Scholar] [CrossRef]
- Firouzeh, F.F.; Rajan, S.; Chinneck, J.W. Maximum feasible subsystem recovery of compressed ecg signals. In Proceedings of the 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Bari, Italy, 1 June–1 July 2020; pp. 1–6. [Google Scholar]
- Liu, H.; Li, Y.; Zhou, Y.; Jing, X.; Truong, T.K. Joint power line interference suppression and ECG signal recovery in transform domains. Biomed. Signal Processing Control 2018, 44, 58–66. [Google Scholar] [CrossRef]
- Jha, C.K.; Kolekar, M.H. Tunable Q-wavelet based ECG data compression with validation using cardiac arrhythmia patterns. Biomed. Signal Processing Control 2021, 66, 102464. [Google Scholar] [CrossRef]
- Tsai, T.H.; Tsai, F.L. Efficient lossless compression scheme for multi-channel ECG signal processing. Biomed. Signal Processing Control 2020, 59, 101879. [Google Scholar] [CrossRef]
- Maalej, A.; Ben-Romdhane, M.; Tlili, M.; Rivet, F.; Dallet, D.; Rebai, C. On the wavelet-based compressibility of continuous-time sampled ECG signal for e-health applications. Measurement 2020, 164, 108031. [Google Scholar] [CrossRef]
- Polania, L.F.; Carrillo, R.E.; Blanco-Velasco, M.; Barner, K.E. On exploiting interbeat correlation in compressive sensing-based ECG compression. In Compressive Sensing; International Society for Optics and Photonics: Bellingham, DC, USA, 2012; Volume 8365, p. 83650D. [Google Scholar]
- Gurkan, H. Compression of ECG signals using variable-length classifıed vector sets and wavelet transforms. EURASIP J. Adv. Signal Processing 2012, 2012, 119. [Google Scholar] [CrossRef] [Green Version]
- Tawfic, I.; Kayhan, S. Compressed sensing of ECG signal for wireless system with new fast iterative method. Comput. Methods Programs Biomed. 2015, 122, 437–449. [Google Scholar] [CrossRef]
- Melek, M.; Khattab, A. ECG compression using wavelet-based compressed sensing with prior support information. Biomed. Signal Processing Control 2021, 68, 102786. [Google Scholar] [CrossRef]
- Jahanshahi, J.A.; Danyali, H.; Helfroush, M.S. Compressive sensing based the multi-channel ECG reconstruction in wireless body sensor networks. Biomed. Signal Processing Control 2020, 61, 102047. [Google Scholar] [CrossRef]
- Sun, S.; Xing, J.; Zhou, Z.; Wang, W.; Chen, J. Comparative Study of Compressed Sensing for Heart Sound Acquisition in Wireless Body Sensor Networks. IEEE Access 2020, 8, 22483–22492. [Google Scholar] [CrossRef]
- Abhishek, S.; Veni, S. Sparsity enhancing wavelets design for ECG and fetal ECG compression. Biomed. Signal Processing Control 2022, 71, 103082. [Google Scholar] [CrossRef]
- Pareschi, F.; Mangia, M.; Bortolotti, D.; Bartolini, A.; Benini, L.; Rovatti, R.; Setti, G. Energy analysis of decoders for rakeness-based compressed sensing of ECG signals. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 1278–1289. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wei, S.; Wei, D.; Li, L.; Liu, F.; Liu, C. Comparison of four recovery algorithms used in compressed sensing for ECG signal processing. In Proceedings of the 2016 Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 11–14 September 2016; pp. 401–404. [Google Scholar]
- Picariello, E.; Balestrieri, E.; Picariello, F.; Rapuano, S.; Tudosa, I.; De Vito, L. A new method for dictionary matrix optimization in ECG compressed sensing. In Proceedings of the 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Bari, Italy, 1 June–1 July 2020; pp. 1–6. [Google Scholar]
- Liu, R.; Shu, M.; Chen, C. ECG signal denoising and reconstruction based on basis pursuit. Appl. Sci. 2021, 11, 1591. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Tsai, P.Y. Low-complexity compressed sensing with variable orthogonal multi-matching pursuit and partially known support for ECG signals. In Proceedings of the 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 24–27 May 2015; pp. 994–997. [Google Scholar]
- Yang, Y.; Huang, F.; Long, F.; Tang, Y. Design of an Adaptive ECG Signal Processing System Based on Compressed Sensing. In Proceedings of the 2020 5th International Conference on Universal Village (UV), Boston, MA, USA, 24–27 October 2020; pp. 1–5. [Google Scholar]
- Zhou, Y.B.; Chen, J.S. WBAN node sleep strategy and energy conservation method based on data compression. J. Interdiscip. Math. 2018, 21, 1073–1078. [Google Scholar] [CrossRef]
- Cheng, Y.; Ye, Y.; Hou, M.; He, W.; Li, Y.; Deng, X. A fast and robust non-sparse signal recovery algorithm for wearable ECG telemonitoring using ADMM-based block sparse Bayesian learning. Sensors 2018, 18, 2021. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Liu, X.; Wei, S.; Gan, H.; Liu, F.; Li, Y.; Liu, F. Electrocardiogram reconstruction based on compressed sensing. IEEE Access 2019, 7, 37228–37237. [Google Scholar] [CrossRef]
- Singh, A.; Dandapat, S. Exploiting multi-scale signal information in joint compressed sensing recovery of multi-channel ECG signals. Biomed. Signal Processing Control 2016, 29, 53–66. [Google Scholar] [CrossRef]
- Balouchestani, M.; Raahemifar, K.; Krishnan, S. Low sampling-rate approach for ECG signals with compressed sensing theory. In Proceedings of the 2013 ICME International Conference on Complex Medical Engineering, Beijing, China, 25–28 May 2013; pp. 70–75. [Google Scholar]
- Liu, S.; Wu, F.Y. Self-training dictionary based approximated ℓ0 norm constraint reconstruction for compressed ECG. Biomed. Signal Processing Control 2021, 68, 102768. [Google Scholar] [CrossRef]
- Pant, J.K.; Krishnan, S. Compressive sensing of electrocardiogram signals by promoting sparsity on the second-order difference and by using dictionary learning. IEEE Trans. Biomed. Circuits Syst. 2013, 8, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Rezaii, T.Y.; Beheshti, S.; Shamsi, M.; Eftekharifar, S. ECG signal compression and denoising via optimum sparsity order selection in compressed sensing framework. Biomed. Signal Processing Control 2018, 41, 161–171. [Google Scholar] [CrossRef]
- Polanía, L.F.; Plaza, R.I. Compressed sensing ECG using restricted Boltzmann machines. Biomed. Signal Processing Control 2018, 45, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Rakshit, M.; Das, S. Electrocardiogram beat type dictionary based compressed sensing for telecardiology application. Biomed. Signal Processing Control 2019, 47, 207–218. [Google Scholar] [CrossRef]
- Černá, D.; Rebollo-Neira, L. Construction of wavelet dictionaries for ECG modeling. MethodsX 2021, 8, 101314. [Google Scholar] [CrossRef]
- Daponte, P.; De Vito, L.; Iadarola, G.; Picariello, F. ECG Monitoring Based on Dynamic Compressed Sensing of Multi-Lead Signals. Sensors 2021, 21, 7003. [Google Scholar] [CrossRef]
- Abo-Zahhad, M.M.; Hussein, A.I.; Mohamed, A.M. Compression of ECG signal based on compressive sensing and the extraction of significant features. Int. J. Commun. Netw. Syst. Sci. 2015, 8, 97. [Google Scholar] [CrossRef] [Green Version]
- Šaliga, J.; Andráš, I.; Dolinský, P.; Michaeli, L.; Kováč, O.; Kromka, J. ECG compressed sensing method with high compression ratio and dynamic model reconstruction. Measurement 2021, 183, 109803. [Google Scholar] [CrossRef]
- Nasimi, F.; Khayyambashi, M.R.; Movahhedinia, N.; Law, Y.W. Exploiting similar prior knowledge for compressing ECG signals. Biomed. Signal Processing Control 2020, 60, 101960. [Google Scholar] [CrossRef]
- Shinde, A.N.; Nalbalwar, S.L.; Nandgaonkar, A.B. Parametric Analysis on Compressed Sensing Reconstruction Approach for Bio-signals. In Proceedings of the 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 20–22 January 2022; pp. 1813–1819. [Google Scholar]
- Iadarola, G.; Daponte, P.; Picariello, F.; De Vito, L. A dynamic approach for Compressed Sensing of multi–lead ECG signals. In Proceedings of the 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Bari, Italy, 1 June–1 July 2020; pp. 1–6. [Google Scholar]
- Daponte, P.; De Vito, L.; Iadarola, G.; Picariello, F.; Rapuano, S. Deterministic Compressed Sensing of heart sound signals. In Proceedings of the 2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Lausanne, Switzerland, 23–25 June 2021; pp. 1–6. [Google Scholar]
- Zhang, H.; Dong, Z.; Wang, Z.; Guo, L.; Wang, Z. CSNet: A deep learning approach for ECG compressed sensing. Biomed. Signal Processing Control 2021, 70, 103065. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, Z.; Liang, J.; Luo, S.; Tian, S. Effective compression and classification of ECG arrhythmia by singular value decomposition. Biomed. Eng. Adv. 2021, 2, 100013. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, J.; Chen, X.; Wu, J. ECG data compression using a neural network model based on multi-objective optimization. PLoS ONE 2017, 12, e0182500. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Chu, H.; Huang, B.; Huan, Y.; Zheng, L.; Zou, Z. Enabling on-device classification of ECG with compressed learning for health IoT. Microelectron. J. 2021, 115, 105188. [Google Scholar] [CrossRef]
- Zareei, S.; Deng, J.D. Impact of compression ratio and reconstruction methods on ecg classification for e-health gadgets: A preliminary study. In Proceedings of the Australasian Joint Conference on Artificial Intelligence, Wellington, New Zealand, 11–14 December 2018; Springer: Cham, Switzerland, 2018; pp. 85–97. [Google Scholar]
- Singhal, V.; Majumdar, A.; Ward, R.K. Semi-supervised deep blind compressed sensing for analysis and reconstruction of biomedical signals from compressive measurements. IEEE Access 2017, 6, 545–553. [Google Scholar] [CrossRef]
- Li, J.; Si, Y.; Xu, T.; Jiang, S. Deep convolutional neural network based ECG classification system using information fusion and one-hot encoding techniques. Math. Probl. Eng. 2018, 2018, 7354081. [Google Scholar] [CrossRef]
- Mohonta, S.C.; Motin, M.A.; Kumar, D.K. Electrocardiogram based arrhythmia classification using wavelet transform with deep learning model. Sens. Bio-Sens. Res. 2022, 37, 100502. [Google Scholar] [CrossRef]
- Jahmunah, V.; Ng EY, K.; San, T.R.; Acharya, U.R. Automated detection of coronary artery disease, myocardial infarction and congestive heart failure using GaborCNN model with ECG signals. Comput. Biol. Med. 2021, 134, 104457. [Google Scholar] [CrossRef]
- Xu, X.; Jeong, S.; Li, J. Interpretation of electrocardiogram (ECG) rhythm by combined CNN and BiLSTM. IEEE Access 2020, 8, 125380–125388. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, C.; Liu, J.; Jin, Y.; Li, Z.; Liu, C. An efficient neural network-based method for patient-specific information involved arrhythmia detection. Knowl. Based Syst. 2022, 250, 109021. [Google Scholar] [CrossRef]
- Alqudah, A.M.; Alqudah, A. Deep learning for single-lead ECG beat arrhythmia-type detection using novel iris spectrogram representation. Soft Comput. 2022, 26, 1123–1139. [Google Scholar] [CrossRef]
- Fang, R.; Lu, C.C.; Chuang, C.T.; Chang, W.H. A visually interpretable detection method combines 3-D ECG with a multi-VGG neural network for myocardial infarction identification. Comput. Methods Programs Biomed. 2022, 219, 106762. [Google Scholar] [CrossRef]
- Sellami, A.; Hwang, H. A robust deep convolutional neural network with batch-weighted loss for heartbeat classification. Expert Syst. Appl. 2019, 122, 75–84. [Google Scholar] [CrossRef]
- Ullah, A.; Rehman, S.U.; Tu, S.; Mehmood, R.M.; Ehatisham-Ul-Haq, M. A hybrid deep CNN model for abnormal arrhythmia detection based on cardiac ECG signal. Sensors 2021, 21, 951. [Google Scholar] [CrossRef] [PubMed]
- Fira, M.; Costin, H.N.; Goraș, L. A Study on Dictionary Selection in Compressive Sensing for ECG Signals Compression and Classification. Biosensors 2022, 12, 146. [Google Scholar] [CrossRef]
- Cao, W.; Zhang, J. Real-Time Deep Compressed Sensing Reconstruction for Electrocardiogram Signals. In Proceedings of the 2022 14th International Conference on Machine Learning and Computing (ICMLC), Guangzhou China, 18–21 February 2022; pp. 490–494. [Google Scholar]
- Chou, C.Y.; Pua, Y.W.; Sun, T.W.; Wu, A.Y. Compressed-domain ECG-Based biometric user identification using compressive analysis. Sensors 2020, 20, 3279. [Google Scholar] [CrossRef]
- Da Poian, G.; Rozell, C.J.; Bernardini, R.; Rinaldo, R.; Clifford, G.D. Matched filtering for heart rate estimation on compressive sensing ECG measurements. IEEE Trans. Biomed. Eng. 2017, 65, 1349–1358. [Google Scholar] [CrossRef]
- Hua, J.; Xu, Y.; Tang, J.; Liu, J.; Zhang, J. ECG heartbeat classification in compressive domain for wearable devices. J. Syst. Archit. 2020, 104, 101687. [Google Scholar] [CrossRef]
- Kerdjidj, O.; Amira, A.; Ghanem, K.; Ramzan, N.; Katsigiannis, S.; Chouireb, F. An FPGA implementation of the matching pursuit algorithm for a compressed sensing enabled e-Health monitoring platform. Microprocess. Microsyst. 2019, 67, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Djelouat, H.; Al Disi, M.; Boukhenoufa, I.; Amira, A.; Bensaali, F.; Kotronis, C.; Dimitrakopoulos, G. Real-time ECG monitoring using compressive sensing on a heterogeneous multicore edge-device. Microprocess. Microsyst. 2020, 72, 102839. [Google Scholar] [CrossRef]
- Tseng, Y.H.; Chen, Y.H.; Lu, C.W. Adaptive integration of the compressed algorithm of CS and NPC for the ECG signal compressed algorithm in VLSI implementation. Sensors 2017, 17, 2288. [Google Scholar] [CrossRef] [Green Version]
- Luo, K.; Cai, Z.; Du, K.; Zou, F.; Zhang, X.; Li, J. A digital compressed sensing-based energy-efficient single-spot bluetooth ecg node. J. Healthc. Eng. 2018, 2018, 2843625. [Google Scholar] [CrossRef] [Green Version]
- Djelouat, H.; Amira, A.; Bensaali, F.; Boukhennoufa, I. Secure compressive sensing for ECG monitoring. Comput. Secur. 2020, 88, 101649. [Google Scholar] [CrossRef]
- Kulkarni, A.; Mohsenin, T. Low overhead architectures for OMP compressive sensing reconstruction algorithm. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 64, 1468–1480. [Google Scholar] [CrossRef]
CS Algorithm | Subcategories |
---|---|
Convex type Optimization [59] | Basis Pursuit (BP) Basis Pursuit denoising Dantzig Selector Total Variation denoising Bp-Simplex Bp-Interior Fixed Point Continuation Gradient Projection for Sparse Representation (GPRS) |
Greedy Algorithm [60] | Matching Pursuit (MP) Gradient Pursuit (GP) Orthogonal MP (OMP) Regularized OMP (ROMP) Compressive Sampling MP (Cosamp) Subspace Pursuit (SP) |
Thresholding Type [61] | Iterative Hard Thresholding (IHT) Iterative Soft Thresholding (IST) Approximate Message Passing (AMP) |
Combinatorial/Sublinear Algorithm [62] | Fourier Sampling Algorithm Chaining Pursuits Heavy Hitters on Steroids (HHS) |
Non-Convex Type [63] | Focal Underdetermined System Solution (FOCUSS) Iterative Re-weighted Least Squares Sparse Bayesian Learning Algorithms Monte-Carlo based algorithms |
Bregman Iterative type [64] | Linearized Bregman Logistic Bregman Split Bregman |
Author | Sensing Matrix | Signal Sparsification | Reconstruction Algorithm | Data Set | Result/Remarks |
---|---|---|---|---|---|
Thilagavathy R et al. [175] | 1D complex DAST | DWT and Run-length encoding (RLE) | IDWT and Run-length Decoding | MIT-BIH arrhythmia database | Average CR = 99.97% Execution time = 0.4568 s and 0.3857 s with and without DAST. Not exact CS but lot of potential to be CS |
Fatemeh Mohammadi et al. [176] | Independent component analysis (ICA) | sparse coefficients based on the learning dictionary | GPSR | Tehran arrhythmia clinic database | Average accuracy = 70.24% |
Fereshteh Fakhar Firouzeh et al. [177] | Random Normalized Matrices (RNM) | DCT | ) and BP | MIT-BIH arrhythmia | sl0 = 8:36 BP = 16:25 |
Hongqing Liu et al. [178] | - | Daubechies4 Wavelet | BP and CoSaMP | MIT-BIH PTB diagnostic ECG | suppression ratio = 18 dB and MSE = −130 dB |
Chandan Kumar Jha et al. [179] | - | dead-zone quantization and run-length encoding | Tunable Q-wavelet transform (TQWT) | MIT-BIH arrhythmia database | Accuracy = 98.35% Sensitivity = 95.77% Specificity = 99.19% |
Tsung-Han Tsai et al. [180] | Multi-channel Linear Prediction unit(MLP) and LP | Golomb-Rice encoding algorithm | Golomb-Rice Decoder | MIT-BIH & PTB | Multichannel Average CR = 4.073 CR improved by 33% |
Asma Maalej et al. [181] | LC-ADC | DWT | OMP algorithm | PTB-diagnostic | Average CR = 63% |
Luisa F. Polania et al. [182] | Gaussian sensing matrix | Daubechies db4 wavelet | BSBL | MIT-BIH Arrhythmia | PRD = 3.55, CR = 10. PRD = 2.07, CR = 14 |
Hakan Gurkan et al. [183] | variable-length classified signature and envelope vector sets VL-CSEVS | wavelet transform | Huffmn decoder | MIT-BIH Compression Test Database | PRD = 1.2 to 5.6% MPRD = 1.627 to 8.631% average CRs = 4:1 to 20:1 |
Israa Tawfic et al. [184] | Random Gaussian matrix | DWT sparsification | LS-OMP and LSD-OMP | Physio Bank ATM | RSNR = 31.0543 |
Michael Melek et al. [185] | Gaussian matrix | Daubechies 5 DWT | ARMP-PKS algorithm | MIT-BIH Arrhythmia | RSNR ARMP-PKS = 22.6, 3.7 & 14.4 dB |
Javad Afshar Jahanshahia.b et al. [186] | Random binary measurement matrix | Kronecker sparsifying db4 wavelet and DCT | ADMM | MIT-BIH and PTB database | CR = 8, time = 0.061 s PRD = 3.32, PRDN = 7.48, QS = 1.95 |
Shuang Sun et al. [187] | Bernoulli matrix | db2 | BP | PhysioNet Database | Irls for best reconstruction quality and BP for efficient algorithm |
S. Abhishek et al. [188] | Random sensing matrix | dew2 | M-SBL (Multiple sparse Bayesian learning algorithm) | MIT-BIH and MIT challenge data set | Average performance of ‘dew2’ is higher in fetal ECGs |
Fabio Pareschi et al. [189] | Rakeness-Based CS optimization | Symlet 6 wavelet | OMP, CoSaMP and IHT | MIT-BIH Arrhythmia Database | OMP preferred for lower energy and high reconstruction quality |
Zhimin Zhang et al. [190] | Gaussian random matrix (GRM) used as measurement matrix | Fourier transform | CoSaMP, OMP, BSBL-EM and BSBL-BO | MIT-BIH Normal Sinus Rhythm Database | PRD for OMP = 7.51% to 81.95%, CoSaMP = 6.07% to 71.09%, BSBL-BO = 1.75% to 15.33% BSBL-EM = 1.79% to 38.09%. |
Enrico Picariello et al. [191] | Binary Matrix | Dictionary matrix | OMP algorithm | MIT-BIH Arrhythmia | PRD < 9% for various CR |
Ruixia Liu et al. [192] | Gaussian random matrix | STFT analysis dictionary | BP-ADMM algorithm | MIT-BIH ECG | 5 dB noise mean SNR = 7.129 |
Yih-Chun Cheng et al. [193] | Binary sensing matrix | DWT | PKS-vOMMP algorithm | MIT-BIH Arrhythmia | Achieved better SNR |
Yaguang Yang et al. [194] | Gaussian matrix | Partial DCT and low-density parity check (LDPC) matrices | BP, OMP, CoSaMP, and BSBL | MLII-type data from MIT-BIH | CR < 60% BSBL algorithm gave best result |
Yue-Bin Zhou [195] | Sparse random matrix | Sparse Representation Classification (SRC) | Greedy algorithms | MIT-BIH database | RT = 50 ms |
Yunfei Cheng et al. [196] | Sparse binary matrix | without dictionary | BSBL-ADMM | MIT-BIH and MIT-BIH Long-Term | Recovery speed was 0.0629 s for CR = 60% Mean PRD = 6.92 |
Zhimin Zhang et al. [197] | Gaussian random matrix | Fourier transform | OMP and CoSaMP BO-BSBL and EM-BSBL | MIT-BIH Normal Sinus Rhythm | PRD ≤ 9% |
Anurag Singh et al. [198] | Random binary sensing matrix | Wavelet | SWMNM and Non-iterative algorithm PWMNM | PTB and MIT-BIH database | PRD1 = 1.31, QS = 4.88 for MIT-BIH, classification accuracy = 73.2% for 10% of compressed data |
Mohammadreza Balouchestani et al. [199] | Random sensing matrix | Dictionary | BSBL framework | MIT-BIH database | 65% reduction in power and 15% incensement on SNR |
Shengxing Liu et al. [200] | Binary matrix | Self-training dictionary scheme (STDS) | CM frameworks | MIT-BIH Arrhythmia database | CR = 0.5 Running time = 0.0039 s PND = 0.2454% RSNR = 53.0814 dB |
Jeevan K. Pant et al. [201] | Basic conjugate gradient | Dictionary learning | -RLS algorithm | MIT-BIH database | reduction in computational time |
Tohid Yousefi Rezaii et al. [202] | OSOS | Dictionary based | OMP algorithm | Physionet ATM | Gaussian matrix SNR = 9.5078 dB, cosine matrix SNR = 7.9655 dB |
Luisa F. Polanía et al. [203] | RBM | wavelets and learned overcomplete dictionaries | OMP | MIT-BIH and European ST-T | Average recall = 96.34% Precision = 93.92% |
Manas Rakshit et al. [204] | Non-uniform Random sensing matrix | Beat type dictionary | a beat type dictionary | MIT-BIH and NSRDB | 33.5% greater CR PRD1 = 9% |
Dana ˇCerná et al. [205] | - | Wavelet dictionaries and DCT | OOMP | MIT-BIH | PRD = 0.51% |
Pasquale Daponte et al. [206] | Dynamic sensing matrix | Mexican hat wavelet | M-SBL and M-FOCUSS | MIT-BIH Arrhythmia | PRD = 0.71%, CR = 2 PRD = 2.82% CR = 10 |
Mohammed M. Abo-Zahhad et al. [207] | Random Gaussian Matrix | DWT, bior4.4 | MIT-BIH database | CR = 11:1 PRD1 = 1.2% | |
Jan Saliga et al. [208] | Bernoulli matrix | The Mexican Hat and the Symlet-4 wavelet | Differential Evolution | MIT-BIH arrhythmia database | norm as the better choice |
Fahimeh Nasimi et al. [209] | Uniform sensing matrix | DWT technique | Basic pursuit | MIT-BIH and MIT-BIH Long Term | Accuracy = 99.9%, for a CR = 25 PRD < 10 |
Ashok Naganath Shinde et al. [210] | Gaussian matrix | Haar Wavelet matrix | AF-GSO | Physiobank database | attained less error for neighbour count is equal to 2 |
Grazia Iadarola et al. [211] | Circulant matrix | Mexican hat wavelet | M-FOCUSS | PTB Database | PRD = 7.05% with Less error. |
Pasquale Daponte et al. [212] | DBBD matrix | DCT and Mexican hat wavelet matrix | OMP | Physiobank database | PRD = 23.88% for CR = 10. less computational complexity |
Author | Application | DL Algorithm | Database | Result | Remark |
---|---|---|---|---|---|
Hongpo Zhang et al. [213] | QRS detection | CNN and LSTM | MIT-BIH NSRDB, MIT-BIH AFDB and European ST-T | Average reconstruction quality = 85% Average time = 0.1265 s | lower reconstruction error |
Lijuan Zheng et al. [214] | Normal, LBBB, RBBB and PVC | CNN and SVM | MIT-BIH cardiac arrhythmia | Average accuracy = 99.39% | low quality signal, achieved high accurate classification |
Bo Zhang et al. [215] | ECG data compression | multi-objective optimization neural network | MIT BIH ECG database | data compression ratio is 1:19, PRD = 12% and CC = 99%, | lesser computational time |
Wenzhuo Li et al. [216] | Arrhythmia Classification | 1-D CNN | MIT-BIH | Average precision = 91.73% sensitivity = 91.55% & specificity = 98.65% | implemented on FPGA, Artix-7 and UMC 40 |
Sophie Zareei et al. [217] | Arrhythmia detection | SVM classifiers | MIT-BIH Arrhythmia database | CR up to 9.77 can be classified with precision and sensitivity > 90% | negative correlation between CR and reconstructed signal quality |
Vanika Singhal et al. [218] | ECG signal classification | CNN | MIT-BIH Arrhythmia database | Average accuracy = 98% | Reconstruction & classification stages are combined as single frame |
Jia Li et al. [219] | cardiovascular disease detection | CNN (LeNet-5) | MIT-BIH arrhythmia | Achieved sensitivity and specificity of 99.4% 99.9% | To increase the convergence speed of the learning rate ADADELTA optimizer is used. |
Shadhon Chandra Mohonta et al. [220] | 5 types of Heartbeat classification | 2D CNN | MIT-BIH arrhythmia database | The average accuracy for TN4 model is 99.65% | Pan Tompkins algorithm was used for ECG wave R peak detection |
Roberta Avanzato et al. [167] | Automated heart disease recognition | 1D CNN | MIT-BIH arrhythmia database | F1 Score Mean Accuracy = 98.33% | Considered three classes database Normal, Atrial premature beat and Premature ventricular contraction. |
V. Jahmunah et al. [221] | Automated ECG classification | CNN and GaborCNN | Fantasia and St. Petersburg databases | Average success rate CNN = 99.55% GaborCNN = 98.74% | CAD, MI and CHF heart diseases were considered for classification |
Xue xu et al. [222] | ECG heart Signal classification | CNN and RNN | MIT-BIH dataset | Accuracy = 95.90% | cardiac health application |
Yunqing Liu et al. [223] | arrhythmia detection | CNN and inverted residual block (IRB) | MIT-BIH arrhythmia | classification accuracy was 100%, | clinical applications. |
Ali Mohammad Alqudah et al. [224] | cardiac arrhythmia classification | 2D CNN | MIT-BIH dataset | overall accuracy = 99.13% | Real-time arrhythmia detection Application |
Rui Fang et al. [225] | Arrhythmia classification | multi-VGG | PTB-XL diagnostic ECG database | inter-patient accuracy = 97.23% | 3-D ECG images was capable of diagnosing heart disease with more accurately and visual interpretability |
Ali Sellami et al. [226] | heartbeat classification | 9-layer CNN | MIT-BIH arrhythmia dataset | Accuracy = 99.79% | Achieved high classification accuracy for single-lead raw ECG data |
Amin Ullah et al. [227] | ECG signal classification | 1D CNN and 2D CNN | MIT-BIH arrhythmia | Accuracy for 1D and 2D CNN was 97.38% and 99.02% respectively | Performance of 2D CNN was better compared to 1D CNN |
Monica fira et al. [228] | Normal and abnormal heartbeat classification | KNN and MLP | MIT-BIH database | Classification accuracy for KNN and MLP = 92.5% and 93.1% respectively | Quality Score for CPCS and PSCCS Methods are 17.04 and 15.46 |
Weibin Cao et al. [229] | Real time ECG monitoring | GAN | MIT-BIH and PTB datasets | RT = 0.014 s | Reconstruction time (RT) improved by 50% |
Author | Application | Algorithm | Database | Result | Remark |
---|---|---|---|---|---|
Ching-Yao Chou et al. [230] | biometric user identification | CA-CA | ECG-ID and PhysioNet QT | Accuracy = 94.16% CT = 6.55 s CR = 0.5 | Computation complexity and power reduced |
Giulia Da Poian et al. [231] | Hearth rate estimation | template matched filtering | MIT Arrhythmia Database | F measure PT = 98.7% MF = 98.9% | Detection of R-peak directly on the CS Measurements |
Jing Hua et al. [232] | Heartbeat Classification | Template based algorithm | MIT-BIH arrhythmia | Accuracy 90.00% & 81.88% CR = 40% | DBM for classification |
Author | Reconstruction Algorithm | Simulation | Synthesis | Hardware | Result | Remarks |
---|---|---|---|---|---|---|
Oussama Kerdjidj et al. [233] | MP | MATLAB | - | Zynq FPGA | Peak Signal to Noise Ratio (PSNR) of 23.8 db | Utilized Static and Dynamic power |
Djelouat et al. [234] | OMP algorithm | MATLAB | - | Shimmer-3 wearable device | CR = 0.5 PRD = 9 & CR = 0.4, PRD = 2.55 | Reduced 35% of power |
Yun-Hua Tseng et al. [235] | Near-Precise Compressed (NPC) and CS | - | Synopsys Design Complier, Cadence | TSMC 0.18 µm CMOS technology 60 MHz | CR = 40 QS = 0.85 | Implemented into Xilinx Kintex-7 FPGA |
Kan Luo et al. [236] | BSBL and DCT | Matlab and LabVIEW | BLE, Analog front-end chips AD8232, MSP430F1611 | reduced power consumption by 77.37% | Recovered undistorted signal. | |
Hamza Djelouat et al. [237] | OMP and SP Algorithm | MATLAB | Code Composer studio (TI 4.4.8 compiler) | Odroid xu4 and Shimmer-3 | achieved maximum of 47% faster reconstrtion | computational complexity was overcome |
Amey Kulkarni et al. [238] | tOMP and GDOMP | MATLAB | Cadence® RTL compiler | 65 nm, 1 V6 M CMOS Technology | 33% less RT for tOMP and 44% less chip area for GDOMP | Reduction in hardware complexity for OMP algorithm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, S.S.; Ramachandran, P. Review on Compressive Sensing Algorithms for ECG Signal for IoT Based Deep Learning Framework. Appl. Sci. 2022, 12, 8368. https://doi.org/10.3390/app12168368
Kumar SS, Ramachandran P. Review on Compressive Sensing Algorithms for ECG Signal for IoT Based Deep Learning Framework. Applied Sciences. 2022; 12(16):8368. https://doi.org/10.3390/app12168368
Chicago/Turabian StyleKumar, Subramanyam Shashi, and Prakash Ramachandran. 2022. "Review on Compressive Sensing Algorithms for ECG Signal for IoT Based Deep Learning Framework" Applied Sciences 12, no. 16: 8368. https://doi.org/10.3390/app12168368
APA StyleKumar, S. S., & Ramachandran, P. (2022). Review on Compressive Sensing Algorithms for ECG Signal for IoT Based Deep Learning Framework. Applied Sciences, 12(16), 8368. https://doi.org/10.3390/app12168368