Using Mechanical Metamaterials in Guitar Top Plates: A Numerical Study
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Eigenfrequency Studies
3.1.1. Unbraced Soundboards
3.1.2. Braced Soundboards
3.1.3. Complete Body
3.2. Displacement under Tension
3.3. Sound Pressure Level
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Zhang, X. Metamaterials: A New Frontier of Science and Technology. Chem. Soc. Rev. 2011, 40, 2494–2507. [Google Scholar] [CrossRef]
- Ma, G.; Sheng, P. Acoustic metamaterials: From local resonances to broad horizons. Sci. Adv. 2016, 2, e1501595. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhou, J.; Liang, H.; Wu, L. Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review. Prog. Mater. Sci. 2017, 94. [Google Scholar] [CrossRef]
- Muamer, K.; Milton, G.; Hecke, M.; Wegener, M. 3D metamaterials. Nat. Rev. Phys. 2019, 1, 1. [Google Scholar] [CrossRef]
- Surjadi, J.; Gao, L.; Du, H.; Li, X.; Xiong, X.; Fang, N. Mechanical Metamaterials and Their Engineering Applications. Adv. Eng. Mater. 2019, 21, 1800864. [Google Scholar] [CrossRef]
- Barchiesi, E.; Spagnuolo, M.; Placidi, L. Mechanical metamaterials: A state of the art. Math. Mech. Solids 2018, 24, 108128651773569. [Google Scholar] [CrossRef]
- Zheng, X.; Lee, H.; Weisgraber, T.; Shusteff, M.; DeOtte, J.; Duoss, E.; Kuntz, J.; Biener, M.; Ge, Q.; Jackson, J.; et al. Ultralight, Ultrastiff Mechanical Metamaterials. Science 2014, 344, 1373–1377. [Google Scholar] [CrossRef]
- Pacchioni, G. Mechanical metamaterials: The strength awakens. Nat. Rev. Mater. 2016, 1, 16012. [Google Scholar] [CrossRef]
- Gore, T. Wood for guitars. In Proceedings of the Meetings on Acoustics 161ASA, Seattle, WA, USA, 23–27 May 2011; Volume 12, p. 035001. [Google Scholar]
- Viala, R.; Placet, V.; Cogan, S. Simultaneous non-destructive identification of multiple elastic and damping properties of spruce tonewood to improve grading. J. Cult. Herit. 2020, 42, 108–116. [Google Scholar] [CrossRef]
- Gibson, C.; Warren, A. Resource-sensitive global production networks: Reconfigured geographies of timber and acoustic guitar manufacturing. Econ. Geogr. 2016, 92, 430–454. [Google Scholar] [CrossRef] [Green Version]
- Lenoir, J.; Gégout, J.C.; Marquet, P.; De Ruffray, P.; Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 2008, 320, 1768–1771. [Google Scholar] [CrossRef]
- Maxwell, C.J.; Scheller, R.M. Identifying Habitat Holdouts for High Elevation Tree Species Under Climate Change. Front. For. Glob. Change 2020, 2, 94. [Google Scholar] [CrossRef]
- Petersen, E.A.; Colinot, T.; Guillemain, P.; Kergomard, J. The link between the tonehole lattice cutoff frequency and clarinet sound radiation: A quantitative study. Acta Acust. 2020, 4, 18. [Google Scholar] [CrossRef]
- Bader, R.; Fischer, J.; Münster, M.; Kontopidis, P. Metamaterials in musical acoustics: A modified frame drum. J. Acoust. Soc. Am. 2019, 145, 3086–3094. [Google Scholar] [CrossRef] [PubMed]
- Oñate, C.E.; Arancibia, A.; Cartes, G.; Beas, C.F. Seeking for spectral manipulation of the sound of musical instruments using metamaterials. In Proceedings of the 15th International Conference on Audio Mostly, Graz, Austria, 15–17 September 2020; pp. 277–280. [Google Scholar]
- Gonzalez, S.; Chacra, E.; Carreño, C.; Espinoza, C. Wooden Mechanical Metamaterials: Towards tunable wood plates. Mater. Des. 2022, 221, 110952. [Google Scholar] [CrossRef]
- Grima, J.; Evans, K. Auxetic behavior from rotating squares. J. Mater. Sci. Lett. 2000, 19, 1563–1565. [Google Scholar] [CrossRef]
- Bertoldi, K.; Boyce, M. Mechanically triggered transformations of phononic band gaps in periodic elastomeric structures. Phys. Rev. B 2008, 77, 052105. [Google Scholar] [CrossRef]
- Bertoldi, K.; Vitelli, V.; Christensen, J.; Van Hecke, M. Flexible mechanical metamaterials. Nat. Rev. Mater. 2017, 2, 1–11. [Google Scholar] [CrossRef]
- Grossi, B.; Palza, H.; Zagal, J.; Falcón, C.; During, G. Metarpillar: Soft robotic locomotion based on buckling-driven elastomeric metamaterials. Mater. Des. 2021, 212, 110285. [Google Scholar] [CrossRef]
- Torres, J.A.; Soto, C.A.; Torres-Torres, D. Exploring design variations of the Titian Stradivari violin using a finite element model. J. Acoust. Soc. Am. 2020, 148, 1496–1506. [Google Scholar] [CrossRef]
- Chatziioannou, V. Reconstruction of an early viola da gamba informed by physical modeling. J. Acoust. Soc. Am. 2019, 145, 3435–3442. [Google Scholar] [CrossRef] [PubMed]
- Salvi, D.; Gonzalez, S.; Antonacci, F.; Sarti, A. Parametric optimization of violin top plates using machine learning. In Proceedings of the 27th International Congress on Sound and Vibration, ICSV 2021, Online, 11–16 July 2021. [Google Scholar]
- Brauchler, A.; Ziegler, P.; Eberhard, P. An entirely reverse-engineered finite element model of a classical guitar in comparison with experimental data. J. Acoust. Soc. Am. 2021, 149, 4450–4462. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, S.; Salvi, D.; Antonacci, F.; Sarti, A. Eigenfrequency optimisation of free violin plates. J. Acoust. Soc. Am. 2021, 149, 1400–1410. [Google Scholar] [CrossRef] [PubMed]
- Kaselouris, E.; Bakarezos, M.; Tatarakis, M.; Papadogiannis, N.A.; Dimitriou, V. A Review of Finite Element Studies in String Musical Instruments. Acoustics 2022, 4, 183–202. [Google Scholar] [CrossRef]
- Giordano, N.; Chatziioannou, V. Status and future of modeling of musical instruments: Introduction to the JASA special issue. J. Acoust. Soc. Am. 2021, 150, 2294–2301. [Google Scholar] [CrossRef] [PubMed]
- Viala, R.; Pérez, M.A.; Placet, V.; Manjon, A.; Foltête, E.; Cogan, S. Towards model-based approaches for musical instruments making: Validation of the model of a Spanish guitar soundboard and characterization features proposal. Appl. Acoust. 2021, 172, 107591. [Google Scholar] [CrossRef]
- Courtnall, R. Making Master Guitars; Hale/Stewart-MacDonald: Athens, OH, USA, 1993. [Google Scholar]
- Moosrainer, M.; Fleischer, H. Application of BEM and FEM to musical instruments. Bound. Elem. Acoust. 2000, 377–410. [Google Scholar]
- Ross, R.J. Wood Handbook: Wood as an Engineering Material; General Technical Report FPL-GTR-190; USDA Forest Service, Forest Products Laboratory: Madison, WI, USA, 2010; Volume 190. [Google Scholar]
- Fletcher, N.H.; Rossing, T.D. The Physics of Musical Instruments; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Kasal, B.; Leichti, R.J. State of the art in multiaxial phenomenological failure criteria for wood members. Prog. Struct. Eng. Mater. 2005, 7, 3–13. [Google Scholar] [CrossRef]
- Gonzalez, S.; Salvi, D.; Baeza, D.; Antonacci, F.; Sarti, A. A data-driven approach to violin making. Sci. Rep. 2021, 11, 1–9. [Google Scholar]
- Brauchler, A.; Hose, D.; Ziegler, P.; Hanss, M.; Eberhard, P. Distinguishing geometrically identical instruments: Possibilistic identification of material parameters in a parametrically model order reduced finite element model of a classical guitar. J. Sound Vib. 2022, 535, 117071. [Google Scholar] [CrossRef]
- Caldersmith, G.; Jansson, E. Frequency response and played tones of guitars. In Quarterly Report STL-QPSR 4/1980; Department of Speech, Technology and Music Acoustics, Royal Institute of Technology (KTH): Stockholm, Sweden, 1980; Volume 21, pp. 50–61. [Google Scholar]
- Meyer, J. Quality aspects of the guitar tone. In Function, Construction, and Quality of the Guitar; Royal Swedish Academy of Music: Stockholm, Sweden, 1983; pp. 51–75. [Google Scholar]
- Tai, H.C.; Shen, Y.P.; Lin, J.H.; Chung, D.T. Acoustic evolution of old Italian violins from Amati to Stradivari. Proc. Natl. Acad. Sci. USA 2018, 115, 5926–5931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lercari, M.; Gonzalez, S.; Espinoza, C.; Longo, G.; Antonacci, F.; Sarti, A. Using Mechanical Metamaterials in Guitar Top Plates: A Numerical Study. Appl. Sci. 2022, 12, 8619. https://doi.org/10.3390/app12178619
Lercari M, Gonzalez S, Espinoza C, Longo G, Antonacci F, Sarti A. Using Mechanical Metamaterials in Guitar Top Plates: A Numerical Study. Applied Sciences. 2022; 12(17):8619. https://doi.org/10.3390/app12178619
Chicago/Turabian StyleLercari, Mattia, Sebastian Gonzalez, Carolina Espinoza, Giacomo Longo, Fabio Antonacci, and Augusto Sarti. 2022. "Using Mechanical Metamaterials in Guitar Top Plates: A Numerical Study" Applied Sciences 12, no. 17: 8619. https://doi.org/10.3390/app12178619
APA StyleLercari, M., Gonzalez, S., Espinoza, C., Longo, G., Antonacci, F., & Sarti, A. (2022). Using Mechanical Metamaterials in Guitar Top Plates: A Numerical Study. Applied Sciences, 12(17), 8619. https://doi.org/10.3390/app12178619