A Statistical Approach to Violin Evaluation
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Violins
2.2. Vibration Tests
2.3. Low-Frequency Features
2.4. Mid-Frequency Features
2.5. Feature-Based Reconstruction
3. Results
3.1. Relative Power Analysis
3.2. Violin Clustering
3.3. Correlation between Features and PCA
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FRF | Frequency Response Function |
MSE | Mean Square Error |
RP | Relative Power |
PCA | Principal Component Analysis |
References
- Fritz, C.; Curtin, J.; Poitevineau, J.; Tao, F.C. Listener evaluations of new and Old Italian violins. Proc. Natl. Acad. Sci. USA 2017, 114, 5395–5400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fritz, C.; Curtin, J.; Poitevineau, J.; Morrel-Samuels, P.; Tao, F.C. Player preferences among new and old violins. Proc. Natl. Acad. Sci. USA 2012, 109, 760–763. [Google Scholar] [CrossRef] [Green Version]
- Rozzi, C.A.; Voltini, A.; Antonacci, F.; Nucci, M.; Grassi, M. A listening experiment comparing the timbre of two Stradivari with other violins. J. Acoust. Soc. Am. 2022, 151, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Rau, M.; Abel, J.S.; Smith, J.O., III. Contact sensor processing for acoustic instrument recording using a modal architecture. In Proceedings of the International Conference of Digital Audio Effects, Aveiro, Portugal, 4–8 September 2018. [Google Scholar]
- Gough, C. Acoustic characterisation of string instruments by internal cavity measurements. J. Acoust. Soc. Am. 2021, 150, 1922–1933. [Google Scholar] [CrossRef] [PubMed]
- Woodhouse, J. On the “bridge hill” of the violin. Acta Acust. United Acust. 2005, 91, 155–165. [Google Scholar]
- Durup, F.; Jansson, E.V. The quest of the violin bridge-hill. Acta Acust. United Acust. 2005, 91, 206–213. [Google Scholar]
- Woodhouse, J. Body vibration of the violin–What can a maker expect to control. Catgut Acoust. Soc. J. 2002, 4, 43–49. [Google Scholar]
- Woodhouse, J. The acoustics of the violin: A review. Rep. Prog. Phys. 2014, 77, 115901. [Google Scholar] [CrossRef]
- Gonzalez, S.; Salvi, D.; Baeza, D.; Antonacci, F.; Sarti, A. A data-driven approach to violin making. Sci. Rep. 2021, 11, 1–9. [Google Scholar]
- Bissinger, G. The violin bridge as filter. J. Acoust. Soc. Am. 2006, 120, 482–491. [Google Scholar] [CrossRef]
- Rau, M. Measurements and analysis of acoustic guitars during various stages of their construction. J. Acoust. Soc. Am. 2021, 149, A25. [Google Scholar] [CrossRef]
- Rau, M.; Abel, J.S.; James, D.; Smith III, J.O. Electric-to-acoustic pickup processing for string instruments: An experimental study of the guitar with a hexaphonic pickup. J. Acoust. Soc. Am. 2021, 150, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Maestre Gómez, E.; Scavone, G.P.; Smith, J.O. Digital modeling of bridge driving-point admittance from measurements on violin-family instruments. In Proceedings of the Stockholm Music Acoustics Conference 2013, Stockholm, Sweden, 30 July–3 August 2013; Bresin, R., Askenfelt, A., Eds.; Logos Verlag: Berlin, Germany, 2013; pp. 101–108. [Google Scholar]
- Woodhouse, J.; Langley, R. Interpreting the Input Admittance of Violins and Guitars. Acta Acust. United Acust. 2012, 98, 611–628. [Google Scholar] [CrossRef]
- Malvermi, R.; Gonzalez, S.; Quintavalla, M.; Antonacci, F.; Sarti, A.; Torres, J.A.; Corradi, R. Feature-based representation for violin bridge admittances. In Proceedings of the “Advances in Acoustics, Noise and Vibration—2021” the 27th International Congress on Sound and Vibration, Online, 11–16 July 2021. [Google Scholar]
- The Permanent Collection of Contemporary Violinmaking. Available online: https://www.museodelviolino.org/en/museo/percorso-museale/sala-8-il-concorso-triennale-di-liuteria-contemporanea/ (accessed on 12 May 2022).
- Vasques, C.; Rodrigues, J.D. Vibration and Structural Acoustics Analysis: Current Research and Related Technologies; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Kiesel, T.; Langer, P.; Marburg, S. Numerical Study on the Effect of Gravity on Modal Analysis of Thin-Walled Structures. Acta Acust. United Acust. 2019, 105, 545–554. [Google Scholar] [CrossRef]
- Schwarz, B.J.; Richardson, M.H. Experimental modal analysis. CSI Reliab. Week 1999, 35, 1–12. [Google Scholar]
- Gough, C.E. A violin shell model: Vibrational modes and acoustics. J. Acoust. Soc. Am. 2015, 137, 1210–1225. [Google Scholar] [CrossRef] [Green Version]
- Meirovitch, L. Fundamentals of Vibrations; McGraw-Hill Higher Education, McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Curtin, J. Scent of a violin. STRAD 2009, 120, 30–33. [Google Scholar]
- Chopra, A.K. Dynamics of Structures: Theory and Applications to Earthquake Engineering; Pearson: London, UK, 2006. [Google Scholar]
- Normalized Tunable Sigmoid Function. Available online: https://dhemery.github.io/DHE-Modules/technical/sigmoid/ (accessed on 22 May 2022).
- Ross, R.J. Wood handbook: Wood as an engineering material. In USDA Forest Service, Forest Products Laboratory, General Technical Report FPL-GTR-190, 2010: 509 p. 1 v; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2010; Volume 190. [Google Scholar] [CrossRef]
- Jain, A.; Nandakumar, K.; Ross, A. Score normalization in multimodal biometric system. Pattern Recognit. 2005, 38, 2270–2285. [Google Scholar] [CrossRef]
- Gruvaeus, G.; Wainer, H. Two additions to hierarchical cluster analysis. Br. J. Math. Stat. Psychol. 1972, 25, 200–206. [Google Scholar] [CrossRef]
- Defays, D. An efficient algorithm for a complete link method. Comput. J. 1977, 20, 364–366. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: London, UK, 2013. [Google Scholar]
- Fritz, C.; Cross, I.; Moore, B.C.; Woodhouse, J. Perceptual thresholds for detecting modifications applied to the acoustical properties of a violin. J. Acoust. Soc. Am. 2007, 122, 3640–3650. [Google Scholar] [CrossRef] [PubMed]
- Badiane, D.G.; Malvermi, R.; Gonzalez, S.; Antonacci, F.; Sarti, A. On the Prediction of the Frequency Response of a Wooden Plate from Its Mechanical Parameters. In Proceedings of the ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 22–27 May 2022; pp. 461–465. [Google Scholar] [CrossRef]
Name | Description |
---|---|
Signature mode frequencies | |
Frequency of the first signature mode (Helmoltz mode, A0) | |
Frequency of the second signature mode (C Bouts Rhomboidal mode, CBR) | |
Frequency of the third signature mode (Corpus mode, B1−) | |
Frequency of the fourth signature mode (Body mode, B1+) | |
Signature mode amplitudes | |
Amplitude of the first signature mode (Helmoltz mode, A0) | |
Amplitude of the second signature mode (C Bouts Rhomboidal mode, CBR) | |
Amplitude of the third signature mode (Corpus mode, B1−) | |
Amplitude of the fourth signature mode (Body mode, B1+) | |
Signature mode damping | |
Q Factor of the first signature mode (Helmoltz mode, A0) | |
Q Factor of the second signature mode (C Bouts Rhomboidal mode, CBR) | |
Q Factor of the third signature mode (Corpus mode, B1−) | |
Q Factor of the fourth signature mode (Body mode, B1+) | |
Mid-frequency | |
Frequency of the first antiresonance after mode B1+ | |
Relative power of the signature modes, | |
Sigmoid center frequency | |
Relative power center value, | |
Relative power curvature | |
Area difference, | |
Slope of the linear fit at high frequency |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malvermi, R.; Gonzalez, S.; Antonacci, F.; Sarti, A.; Corradi, R. A Statistical Approach to Violin Evaluation. Appl. Sci. 2022, 12, 7313. https://doi.org/10.3390/app12147313
Malvermi R, Gonzalez S, Antonacci F, Sarti A, Corradi R. A Statistical Approach to Violin Evaluation. Applied Sciences. 2022; 12(14):7313. https://doi.org/10.3390/app12147313
Chicago/Turabian StyleMalvermi, Raffaele, Sebastian Gonzalez, Fabio Antonacci, Augusto Sarti, and Roberto Corradi. 2022. "A Statistical Approach to Violin Evaluation" Applied Sciences 12, no. 14: 7313. https://doi.org/10.3390/app12147313
APA StyleMalvermi, R., Gonzalez, S., Antonacci, F., Sarti, A., & Corradi, R. (2022). A Statistical Approach to Violin Evaluation. Applied Sciences, 12(14), 7313. https://doi.org/10.3390/app12147313