Efficacy of Herbal Extracts-Based Nano-Formulations in Extending Guava Fruit Shelf-Life
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Preparation of Plant Extracts
2.3. Physiological Characteristics
2.3.1. Physiological Loss in Weight (PLW)
2.3.2. Firmness
2.3.3. Color Change
2.4. Statistical Analysis
3. Results
3.1. DPPH Radical Scavenging Activity
3.2. Physiological Loss in Weight (PLW)
C.D. at 5% Level of Significance | |
Storage temperature | 0.12 |
DAT | 0.20 |
Storage temperature × DAT | 0.28 |
Treatment | 0.16 |
Storage temperature × Treatment | N/A |
DAT × Treatment | 0.40 |
Storage temperature × DAT × Treatment | 0.57 |
3.3. Fruit Firmness
C.D. at 5% Level of Significance | |
Storage temperature | 0.04 |
DAT | 0.08 |
Storage temperature X DAT | 0.12 |
Treatment | 0.06 |
Storage temperature X Treatment | 0.09 |
DAT X Treatment | 0.17 |
Storage temperature X DAT X Treatment | 0.23 |
3.4. Color Change
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yadav, S.K.; Sarolia, D.K.; Pilania, S.; Meena, H.R.; Mahawer, L.N. Studies on keeping quality of preserved guava pulp during storage. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1235–1242. [Google Scholar] [CrossRef]
- Kamath, J.; Rahul, N.; Kumar, C.A.; Lakshmi, S. Psidium guajava L.: A review. Int. J. Green Pharm. 2008, 2, 1–6. [Google Scholar] [CrossRef]
- Singh, J.; Prasad, N.; Singh, S.K. Postharvest treatment of guava (Psidium guajava L.) fruits with boric acid and NAA for quality regulation during ambient Storage. Int. J. Bio-Resour. Stress Manag. 2017, 8, 201–206. [Google Scholar] [CrossRef]
- Jha, S.N.; Vishwakarma, R.K.; Ahmad, T.; Rai, A.; Dixit, K. Report on Assessment of Quantitative Harvest and Post-Harvest Losses of Major Crops and Commodities in India; Joint Publication of ICAR and All India Coordinated Research Project on Post-Harvest Technology: Ludhiana, India, 2015. [Google Scholar]
- Chahal, S.; Bal, J.S. Effect of post-harvest treatments and packaging on shelf life of Umran ber at cool temperature. J. Res. Punjab Agric. Univ. 2003, 40, 363–399. [Google Scholar]
- Mahajan, P.V.; Oliveira, F.A.R.; Macedo, I. Effect of temperature and humidity on the transpiration rate of the whole mushrooms. J. Food Eng. 2008, 84, 281–288. [Google Scholar] [CrossRef]
- Pandey, S.K.; Joshua, J.E.; Bisen; Abhay. Influence of gamma-irradiation, growth retardants and coatings on the shelf life of winter guava fruits (Psidium guajava L.). J. Food Sci. Technol. 2010, 47, 124–127. [Google Scholar] [CrossRef]
- Mostafidi, M.; Sanjabi, M.R.; Shirkhan, F.; Zahedi, M.T. A review of recent trends in the development of the microbial safety of fruits and vegetables. Trends Food Sci. Technol. 2020, 103, 321–332. [Google Scholar] [CrossRef]
- Formiga, A.S.; Pinsetta, J.S.; Pereira, E.M.; Cordeiro, I.N.F.; Mattiuz, B.H. Use of edible coatings based on hydroxypropyl methylcellulose and beeswax in the conservation of red guava ‘Pedro Sato’. Food Chem. 2019, 290, 144–151. [Google Scholar] [CrossRef]
- Zambrano-Zaragoza, M.L.; González-Reza, R.; Mendoza-Muñoz, N.; Miranda-Linares, V.; Bernal-Couoh, T.F.; Mendoza-Elvira, S.; Quintanar-Guerrero, D. Nanosystems in edible coatings: A novel strategy for food preservation. Int. J. Mol. Sci. 2018, 19, 705. [Google Scholar] [CrossRef]
- Etemadipoor, R.; Ramezanian, A.; Dastjerdi, A.M.; Shamili, M. The potential of gum arabic enriched with cinnamon essential oil for improving the qualitative characteristics and storability of guava (Psidium guajava L.) fruit. Sci. Hortic. 2019, 251, 101–107. [Google Scholar] [CrossRef]
- Banjoko, I.O.; Olatidoye, O.P.; Oyelol, A.O.; Ajibosin, O.A.; Adebayo, S.A. Influence of aqueous extract of ginger and garlic on shelf-life studies of plantain fingers (Musa paradisiaca) at ambient and refrigerated conditions. EC Nutr. 2019, 14, 301–308. [Google Scholar]
- Ali, A.; Hei, G.K.; Keat, Y.W. Efficacy of ginger oil and extract combined with gum Arabic on anthracnose and quality of papaya fruit during cold storage. J. Food Sci. Technol. 2016, 53, 1435–1444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, A.A.; Salifu, A.W.; Chonga, J.; Bayuo, T. Effect of ginger extracts and storage temperature on shelf life of kent mango fruits. Int. J. Postharvest Technol. Innov. 2016, 4, 75–82. [Google Scholar]
- Ashwini, M.; Nikhita, D. Biopreservative effect of plant extracts on the shelf life of mango cv. Raspuri. J. Pharmacogn. Phytochem. 2018, 7, 2245–2248. [Google Scholar]
- Sanwal, G.G.; Payasi, A. Garlic extract plus sodium metabisulphite enhances shelf life of ripe banana fruit. Int. J. Food Sci. 2007, 42, 303–311. [Google Scholar] [CrossRef]
- Ahmad, S.M.; Hoot, S.B.; Qazi, P.H.; Verma, V. Phylogenetic patterns and genetic diversity of Indian Tinospora species based on chloroplast sequence data and cytochrome P450 polymorphisms. Plant Syst. Evol. 2009, 281, 87–96. [Google Scholar] [CrossRef]
- Singh, K.; Panghal, M.; Kadyan, S.; Chaudhary, U.; Yadav, J.P. Antibacterial activity of synthesized silver nanoparticles from Tinospora cordifolia against multi drug resistant strains of Pseudomonas aeruginosa isolated from burn patients. J. Nanomed. Nanotechnol. 2014, 5, 2. [Google Scholar] [CrossRef]
- Mora-Huertas, C.E.; Fessi, H.; Elaissari, A. Polymer-based nanocapsules for drug delivery. Int. J. Pharm. 2010, 385, 113–142. [Google Scholar] [CrossRef]
- Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 1992, 40, 945–948. [Google Scholar] [CrossRef]
- Zambrano-Zaragoza, M.L.; Mercado-Silva, E.; Ramirez-Zamorano, P.; Cornejo-Villegas, M.A.; Guti_errez-Cortez, E.; Quintanar-Guerrero, D. Use of solid lipid nanoparticles (SLNs) in edible coatings to increase guava (Psidium guajava L.) shelf-life. Food Res. Int. 2013, 51, 946–953. [Google Scholar] [CrossRef]
- Forato, L.A.; de Britto, D.; de Rizzo, J.S.; Gastaldi, T.A.; Assis, O.B. Effect of cashew gum-carboxymethyl cellulose edible coatings in extending the shelf-life of fresh and cut guavas. Food Packag. Shelf Life 2015, 5, 68–74. [Google Scholar] [CrossRef]
- Botelho, L.N.S.; Rocha, D.A.; Braga, M.A.; Silva, A.; de Abreu, C.M.P. Quality of guava cv. ‘PedroSato’ treated with cassava starch and cinnamon essential oil. Sci. Hortic. 2016, 209, 214–220. [Google Scholar] [CrossRef]
- Hong, K.; Xie, J.; Zhang, L.; Sun, D.; Gong, D. Effects of chitosan coating on postharvest life and quality of guava (Psidium guajava L.) fruit during cold storage. Sci. Hortic. 2012, 144, 172–178. [Google Scholar] [CrossRef]
- Murmu, S.B.; Mishra, H.N. Optimization of the arabic gum based edible coating formulations with sodium caseinate and tulsi extract for guava. LWT-Food Sci. Technol. 2017, 80, 271–279. [Google Scholar] [CrossRef]
- El-Gioushy, S.F.; Abdelkader, M.F.; Mahmoud, M.H.; El Ghit, H.M.A.; Fikry, M.; Bahloul, A.M.; Morsy, A.R.; Abdelaziz, A.M.; Alhaithloul, H.A.; Hikal, D.M.; et al. The effects of a gum arabic-based edible coating on guava fruit characteristics during storage. Coatings 2022, 12, 90. [Google Scholar] [CrossRef]
- Tovar, G.C.D.; Delgado-Ospina, J.; Porras, D.P.N.; Peralta-Ruiz, Y.; Cordero, A.P.; Castro, J.I.; Valencia, M.N.C.; Mina, J.H.; López, C.C. Colletotrichum gloesporioides inhibition in situ by chitosan-ruta graveolens essential oil coatings: Effect on microbiological, physicochemical, and organoleptic properties of guava (Psidium guajava L.) during Room Temperature Storage. Biomolecules 2019, 9, 399. [Google Scholar] [CrossRef]
- De Araújo Alves, K.; de Araujo, R.H.; de Oliveira, A.M.; de Morais, F.A.; Onias, E.A.; de Medeiros, T.A.E.; Ferreira, A.P.; de Lima, J.F.; Dias, G.A. Nutraceutical coating composition for postharvest conservation of ’Paluma’ guava. Aust. J. Crop Sci. 2020, 14, 649. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, Q. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int. J. Biol. Macromol. 2014, 64, 353–367. [Google Scholar] [CrossRef]
- Zhao, Q.; Han, B.; Wang, Z.; Gao, C.; Peng, C.; Shen, J. Hollow chitosan–alginate multilayer microcapsules as drug delivery vehicle: Doxorubicin loading and in vitro and in vivo studies. Nanomedicine 2007, 3, 63–74. [Google Scholar] [CrossRef]
- Hernández-Muñoz, P.; Almenar, E.; Ocio, M.J.; Gavara, R. Effect of calcium dips and chitosan coatings on postharvest life of strawberries (Fragaria x ananassa). Postharvest Biol. Technol. 2006, 39, 247–253. [Google Scholar] [CrossRef]
- Chander, M.B.V.; Singh, G.K.; Singh, D.H. Effect of storage period on various physiological, biochemical and enzymatic parameters of guava (Psidium guajava L.) fruit. J. Exp. Biol. Agric. Sci. 2017, 5, 846–851. [Google Scholar] [CrossRef]
- Sharma, M.; Saini, C.S. Postharvest shelf-life extension of fresh-cut guavas (Psidium guajava) using flaxseed protein-based composite coatings. Food Hydrocoll. Health 2021, 1, 100015. [Google Scholar] [CrossRef]
- Nawab, A.; Alam, F.; Hasnain, A. Mango kernel starch as a novel edible coating for enhancing shelf-life of tomato (Solanum lycopersicum) fruit. Int. J. Biol. Macromol. 2017, 103, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Braga, M.A.; Marques, T.R.; Simão, A.A.; Botelho, L.N.S.; Oliveira, L.S.D.; Abreu, C.M.P.D. Mechanism of firmness loss in guava cv. Pedro Sato dur- ing ripening at room temperature. Food Sci. Technol. Int. 2018, 38, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Santos, T.M.; Filho, M.D.S.M.S.; Silva, E.D.O.; da Silveira, M.R.S.; de Miranda, M.R.A.; Lopes, M.M.A.; Azeredo, H.M.C. Enhancing storage stability of guava with tannic acid-cross linked zein coatings. Food Chem. 2018, 257, 252–258. [Google Scholar] [CrossRef]
- Gago, C.; Antão, R.; Dores, C.; Guerreiro, A.; Miguel, M.G.; Faleiro, M.L.; Figueiredo, A.C.; Antunes, M.D. The effect of nanocoatings enriched with essential oils on ‘rocha’ pear long storage. Foods 2020, 9, 240. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, A.D.; da Costa, J.M.; Afonso, M.R.; Clemente, E. Pigments of guava paluma cultivar stored under environmental conditions. Afr. J. Food Sci. 2011, 5, 320–323. [Google Scholar]
- Etemadipoor, R.; Dastjerdi, A.M.; Ramezanian, A.; Ehteshami, S. Ameliorative effect of gum arabic, oleic acid and/or cinnamon essential oil on chilling injury and quality loss of guava fruit. Sci. Hortic. 2020, 266, 109255. [Google Scholar] [CrossRef]
- McHugh, T.H. Recent advances on edible films based on fruits and vegetables-A review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1151–1169. [Google Scholar]
Zone of Inhibition (in mm) at Different Concentration of Herbal Extracts and Their NFs | ||||||
---|---|---|---|---|---|---|
Bacterial Strains→ Antibacterial Solutions ↓ | E. coli | P. aeruginosa | B. cereus | |||
100 μL | 150 μL | 100 μL | 150 μL | 100 μL | 150 μL | |
T1 | 8 ± 0.12 | 12 ± 0.34 | 8 ± 0.42 | 10 ± 0.23 | 10 ± 0.50 | 12 ± 0.41 |
T2 | 12 ± 0.45 | 14 ± 0.17 | 13 ± 0.51 | 14 ± 0.62 | 8 ± 0.26 | 11 ± 0.34 |
T3 | 13 ± 0.46 | 14 ± 0.92 | 8 ± 0.28 | 10 ± 0.41 | 11 ± 0.23 | 14 ± 0.33 |
Ajwain | 8 ± 0.26 | 10 ± 0.27 | 13 ± 0.43 | 14 ± 0.38 | 6 ± 0.42 | 8 ± 0.36 |
Giloy | 10 ± 0.15 | 12 ± 0.43 | - | - | 7 ± 0.54 | 10 ± 0.53 |
Nfs and Herbal Extracts | DPPH Radical Scavenging Activity (%) |
---|---|
T1 | 67.04 ± 0.39 |
T2 | 93.27 ± 1.43 |
T3 | 71.67 ± 1.09 |
Ajwain | 89.90 ± 1.17 |
Giloy | 67.05 ± 1.04 |
C.D. at 5% | 0.31 |
Coating | Effect of Coatings | Deposition | References |
---|---|---|---|
Gum Arabic and Moringa extract | Sustained fruit firmness, TSS, antioxidant activity and total sugars | Dipping | [26] |
Arabic Gum, Sodium Caseinate and Tulsi Extract | Reduced evaporation, transpiration and oxygen transmission | Dipping | [25] |
Gum Arabic and Cinnamon Essential Oil | Reduced PLW, maintenance of firmness, caretonenoid content, and chlorophyll content, as compared to control fruit | Dipping | [11] |
Chitosan and Ruta Graveolens Essential Oil | Antimicrobial activity against Colletotrichum gloesporioides and maintenance of fruit firmness; lesser PLW | Dipping | [27] |
Agar (4%) + Pomegranate Seed oil (0.4 mL/L) | Reduction in PLW; fruit color and TSS maintained by coating and no change in carotenoid content | Dipping | [28] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rani, A.; Tokas, J.; Gupta, P.; Punia, H.; Baloda, S. Efficacy of Herbal Extracts-Based Nano-Formulations in Extending Guava Fruit Shelf-Life. Appl. Sci. 2022, 12, 8630. https://doi.org/10.3390/app12178630
Rani A, Tokas J, Gupta P, Punia H, Baloda S. Efficacy of Herbal Extracts-Based Nano-Formulations in Extending Guava Fruit Shelf-Life. Applied Sciences. 2022; 12(17):8630. https://doi.org/10.3390/app12178630
Chicago/Turabian StyleRani, Anju, Jayanti Tokas, Pernika Gupta, Himani Punia, and Satpal Baloda. 2022. "Efficacy of Herbal Extracts-Based Nano-Formulations in Extending Guava Fruit Shelf-Life" Applied Sciences 12, no. 17: 8630. https://doi.org/10.3390/app12178630
APA StyleRani, A., Tokas, J., Gupta, P., Punia, H., & Baloda, S. (2022). Efficacy of Herbal Extracts-Based Nano-Formulations in Extending Guava Fruit Shelf-Life. Applied Sciences, 12(17), 8630. https://doi.org/10.3390/app12178630