Hybrid Techniques for Diagnosis with WSIs for Early Detection of Cervical Cancer Based on Fusion Features
Abstract
:1. Introduction
- Application of PCA algorithm to reduce features produced using CNN models in all the proposed methods.
- Application of the hybrid techniques, namely VGG-16 + SVM and GoogLeNet + SVM to diagnose WSIs of abnormal cells in the cervix.
- Combining the features of the VGG-16 with the GoogLeNet. Then classifying them using an ANN classifier to diagnose WSIs of abnormal cells of the cervix.
- Diagnosis of cervical abnormal cell images by ANN with the fusion features technique that combines the features of VGG-16 and GoogLeNet separately and fuses them with the Handcrafted features.
2. Related Work
3. Methods and Materials
3.1. Description of the Data Set
3.2. Enhancing WSIs of the Cervix Cancer
3.3. CNN Models with SVM
3.3.1. Extracting Feature Maps
3.3.2. SVM Algorithm
3.4. Fusion Approach of Deep Features Maps
3.5. Approach to Merging Features of CNN with Hand-Crafted
4. Results of System Performance
4.1. Split of Data Set
4.2. Evaluation Metrics
4.3. Results of CNN Models
4.4. Results of CNN Models with SVM
4.5. Results of Fusion Approach of Deep Features Maps
4.6. Results of Approach to Merging Features of CNN with Hand-Crafted
4.6.1. Best Validation Performance
4.6.2. Error Histogram
4.6.3. Validation Checks and Gradient
4.6.4. Confusion Matrix
5. Discussion of the Execution of the Systems
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019, 144, 1941–1953. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Bhatla, N.; Aoki, D.; Sharma, D.N.; Sankaranarayanan, R. Cancer of the cervix uteri. Int. J. Gynecol. Obstet. 2018, 143, 22–36. [Google Scholar] [CrossRef]
- Silva-López, M.S.; Ilizaliturri Hernández, C.A.; Navarro Contreras, H.R.; Rodríguez Vázquez, Á.G.; Ortiz-Dosal, A.; Kolosovas-Machuca, E.S. Raman Spectroscopy of Individual Cervical Exfoliated Cells in Premalignant and Malignant Lesions. Appl. Sci. 2022, 12, 2419. [Google Scholar] [CrossRef]
- Lee, A.L.S.; To, C.C.K.; Lee, A.L.H.; Li, J.J.X.; Chan, R.C.K. Model architecture and tile size selection for convolutional neural network training for non-small cell lung cancer detection on whole slide images. Inform. Med. Unlocked 2022, 28, 100850. [Google Scholar] [CrossRef]
- Chen, C.P.; Kung, P.T.; Wang, Y.H.; Tsai, W.C. Effect of time interval from diagnosis to treatment for cervical cancer on survival: A nationwide cohort study. PLoS ONE 2019, 14, e0221946. [Google Scholar] [CrossRef]
- WHO. Guideline for Screening and Treatment of Cervical Pre-Cancer Lesions for Cervical Cancer Prevention; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Davey, E.; Barratt, A.; Irwig, L.; Chan, S.F.; Macaskill, P.; Mannes, P.; Saville, A.M. Effect of study design and quality on unsatisfactory rates, cytology classifications, and accuracy in liquid-based versus conventional cervical cytology: A systematic review. Lancet 2006, 367, 122–132. Available online: https://www.sciencedirect.com/science/article/pii/S0140673606679610 (accessed on 13 February 2022). [CrossRef]
- Charoenkwan, P.; Shoombuatong, W.; Nantasupha, C.; Muangmool, T.; Suprasert, P.; Charoenkwan, K. iPMI: Machine Learning-Aided Identification of Parametrial Invasion in Women with Early-Stage Cervical Cancer. Diagnostics 2021, 11, 1454. [Google Scholar] [CrossRef]
- Wei, Z.; Cheng, S.; Liu, X.; Zeng, S. An efficient cervical whole slide image analysis framework based on multi-scale semantic and spatial deep features. arXiv 2021, arXiv:2106.15113. [Google Scholar]
- Kundu, R.; Basak, H.; Koilada, A.; Chattopadhyay, S.; Chakraborty, S.; Das, N. Ensemble of CNN classifiers using Sugeno Fuzzy Integral Technique for Cervical Cytology Image Classification. arXiv 2021, arXiv:2108.09460. [Google Scholar]
- Kanavati, F.; Hirose, N.; Ishii, T.; Fukuda, A.; Ichihara, S.; Tsuneki, M. A Deep Learning Model for Cervical Cancer Screening on Liquid-Based Cytology Specimens in Whole Slide Images. Cancers 2022, 14, 1159. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, Z.; Shen, X.; Zhou, Y.; Xiao, B.; Li, T.-Q. Detection of Cervical Cancer Cells in Whole Slide Images Using Deformable and Global Context Aware Faster RCNN-FPN. Curr. Oncol. 2021, 28, 3585–3601. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Feng, M.; Wang, Y.; Xu, K. Whole Slide Images Based Cervical Cancer Classification Using Self-supervised Learning and Multiple Instance Learning. In Proceedings of the 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), Nanchang, China, 26–28 March 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 192–195. Available online: https://ieeexplore.ieee.org/abstract/document/9389824/ (accessed on 13 February 2022).
- Gupta, M.; Das, C.; Roy, A.; Gupta, P.; Pillai, G.R.; Patole, K. Region of interest identification for cervical cancer images. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, IA, USA, 3–7 April 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1293–1296. Available online: https://ieeexplore.ieee.org/abstract/document/9098587/ (accessed on 13 February 2022).
- Chen, H.; Liu, J.; Wen, Q.M.; Zuo, Z.Q.; Liu, J.S.; Feng, J.; Xiao, D. CytoBrain: Cervical cancer screening system based on deep learning technology. J. Comput. Sci. Technol. 2021, 36, 347–360. [Google Scholar] [CrossRef]
- Cheng, S.; Liu, S.; Yu, J.; Rao, G.; Xiao, Y.; Han, W.; Liu, X. Robust whole slide image analysis for cervical cancer screening using deep learning. Nat. Commun. 2021, 12, 1–10. Available online: https://www.nature.com/articles/s41467-021-25296-x (accessed on 13 February 2022).
- Wang, C.W.; Liou, Y.A.; Lin, Y.J.; Chang, C.C.; Chu, P.H.; Lee, Y.C.; Chao, T.K. Artificial intelligence-assisted fast screening cervical high grade squamous intraepithelial lesion and squamous cell carcinoma diagnosis and treatment planning. Sci. Rep. 2021, 11, 1–14. Available online: https://www.nature.com/articles/s41598-021-95545-y (accessed on 13 February 2022).
- Pirovano, A.; Almeida, L.G.; Ladjal, S.; Bloch, I.; Berlemont, S. Computer-aided diagnosis tool for cervical cancer screening with weakly supervised localization and detection of abnormalities using adaptable and explainable classifier. Med. Image Anal. 2021, 73, 102167. Available online: https://www.sciencedirect.com/science/article/pii/S1361841521002139 (accessed on 13 February 2022). [CrossRef]
- Zhou, X.; Li, W.; Wen, Z. Data Analysis for Risk Prediction of Cervical Cancer Metastasis and Recurrence Based on DCNN-RF. J. Phys. Conf. Ser. 2021, 1813, 012033. Available online: https://iopscience.iop.org/article/10.1088/1742-6596/1813/1/012033/meta (accessed on 13 February 2022). [CrossRef]
- Yan, X.; Zhang, Z. HSDet: A Representative Sampling Based Object Detector in Cervical Cancer Cell Images. In Proceedings of the International Conference on Bio-Inspired Computing: Theories and Applications, Taiyuan, China, 12–14 November 2021; Springer: Singapore, 2020; pp. 406–418. [Google Scholar] [CrossRef]
- Wei, Z.; Cheng, S.; Liu, X.; Zeng, S. Cervical Glandular Cell Detection from Whole Slide Image with Out-Of-Distribution Data. arXiv 2022, arXiv:2205.14625. [Google Scholar]
- Basak, H.; Kundu, R.; Chakraborty, S.; Das, N. Cervical cytology classification using PCA and GWO enhanced deep features selection. SN Comput. Sci. 2021, 2, 1–17. Available online: https://paperswithcode.com/paper/cervical-cytology-classification-using-pca (accessed on 27 August 2022).
- Manna, A.; Kundu, R.; Kaplun, D.; Sinitca, A.; Sarkar, R. A fuzzy rank-based ensemble of CNN models for classification of cervical cytology. Sci. Rep. 2021, 11, 1–18. Available online: https://paperswithcode.com/paper/a-fuzzy-rank-based-ensemble-of-cnn-models-for (accessed on 27 August 2022).
- Pramanik, R.; Biswas, M.; Sen, S.; de Souza Júnior, L.A.; Papa, J.P.; Sarkar, R. A fuzzy distance-based ensemble of deep models for cervical cancer detection. Comput. Methods Programs Biomed. 2022, 219, 106776. [Google Scholar] [CrossRef] [PubMed]
- Rahaman, M.M.; Li, C.; Yao, Y.; Kulwa, F.; Wu, X.; Li, X.; Wang, Q. DeepCervix: A deep learning-based framework for the classification of cervical cells using hybrid deep feature fusion techniques. Comput. Biol. Med. 2021, 136, 104649. Available online: https://paperswithcode.com/paper/deepcervix-a-deep-learning-based-framework (accessed on 27 August 2022). [CrossRef]
- Multi Cancer Dataset|Kaggle. Available online: https://www.kaggle.com/datasets/obulisainaren/multi-cancer (accessed on 27 June 2022).
- Prezja, F.; Pölönen, I.; Äyrämö, S.; Ruusuvuori, P.; Kuopio, T. H&E Multi-Laboratory Staining Variance Exploration with Machine Learning. Appl. Sci. 2022, 12, 7511. [Google Scholar] [CrossRef]
- Al-Mekhlafi, Z.G.; Senan, E.M.; Rassem, T.H.; Mohammed, B.A.; Makbol, N.M.; Alanazi, A.A.; Ghaleb, F.A. Deep Learning and Machine Learning for Early Detection of Stroke and Haemorrhage. Comput. Mater. Contin. 2022, 72, 775–796. Available online: http://eprints.bournemouth.ac.uk/36721/ (accessed on 13 February 2022). [CrossRef]
- Kim, Y.J.; Park, Y.R.; Kim, Y.J.; Ju, W.; Nam, K.; Kim, K.G. A performance comparison of histogram equalization algorithms for cervical cancer classification model. J. Biomed. Eng. Res. 2021, 42, 80–85. [Google Scholar] [CrossRef]
- Mohammed, B.A.; Senan, E.M.; Rassem, T.H.; Makbol, N.M.; Alanazi, A.A.; Al-Mekhlafi, Z.G.; Ghaleb, F.A. Multi-method analysis of medical records and MRI images for early diagnosis of dementia and Alzheimer’s disease based on deep learning and hybrid methods. Electronics 2021, 10, 2860. [Google Scholar] [CrossRef]
- Shrivastav, K.D.; Arambam, P.; Batra, S.; Bhatia, V.; Singh, H.; Jaggi, V.K.; Ranjan, P.; Abed, E.H.; Janardhanan, R. Earth Mover’s Distance-Based Tool for Rapid Screening of Cervical Cancer Using Cervigrams. Appl. Sci. 2022, 12, 4661. [Google Scholar] [CrossRef]
- Abunadi, I.; Senan, E.M. Multi-Method Diagnosis of Blood Microscopic Sample for Early Detection of Acute Lymphoblastic Leukemia Based on Deep Learning and Hybrid Techniques. Sensors 2022, 22, 1629. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, Y.; Hu, P.; Zhang, D.; Yan, B.; Lu, H.M.; Yang, Y. Accelerate treatment planning process using deep learning generated fluence maps for cervical cancer radiation therapy. Med. Phys. 2022, 49, 2631–2641. [Google Scholar] [CrossRef]
- Fu, L.; Xia, W.; Shi, W.; Cao, G.X.; Ruan, Y.T.; Zhao, X.Y.; Gao, X. Deep learning based cervical screening by the cross-modal integration of colposcopy, cytology, and HPV test. Int. J. Med. Inform. 2022, 159, 104675. [Google Scholar] [CrossRef]
- Ahmed, I.A.; Senan, E.M.; Rassem, T.H.; Ali, M.A.; Shatnawi, H.S.A.; Alwazer, S.M.; Alshahrani, M. Eye Tracking-Based Diagnosis and Early Detection of Autism Spectrum Disorder Using Machine Learning and Deep Learning Techniques. Electronics 2022, 11, 530. [Google Scholar] [CrossRef]
- Arezzo, F.; La Forgia, D.; Venerito, V.; Moschetta, M.; Tagliafico, A.S.; Lombardi, C.; Loizzi, V.; Cicinelli, E.; Cormio, G. A Machine Learning Tool to Predict the Response to Neoadjuvant Chemotherapy in Patients with Locally Advanced Cervical Cancer. Appl. Sci. 2021, 11, 823. [Google Scholar] [CrossRef]
- Senan, E.M.; Jadhav, M.E.; Kadam, A. Classification of PH2 images for early detection of skin diseases. In Proceedings of the 2021 6th International Conference for Convergence in Technology, Maharashtra, India, 2–4 April 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Fati, S.M.; Senan, E.M.; ElHakim, N. Deep and Hybrid Learning Technique for Early Detection of Tuberculosis Based on X-ray Images Using Feature Fusion. Appl. Sci. 2022, 12, 7092. [Google Scholar] [CrossRef]
- López-Cortés, X.A.; Matamala, F.; Venegas, B.; Rivera, C. Machine-Learning Applications in Oral Cancer: A Systematic Review. Appl. Sci. 2022, 12, 5715. [Google Scholar] [CrossRef]
- Maqsood, S.; Damaševičius, R.; Maskeliūnas, R. TTCNN: A Breast Cancer Detection and Classification towards Computer-Aided Diagnosis Using Digital Mammography in Early Stages. Appl. Sci. 2022, 12, 3273. [Google Scholar] [CrossRef]
- Fang, R.; Zeng, L.; Yi, F. Analysis of Compound Stained Cervical Cell Images Using Multi-Spectral Imaging. Appl. Sci. 2021, 11, 5628. [Google Scholar] [CrossRef]
- Fati, S.M.; Senan, E.M.; Azar, A.T. Hybrid and Deep Learning Approach for Early Diagnosis of Lower Gastrointestinal Diseases. Sensors 2022, 22, 4079. [Google Scholar] [CrossRef]
- Senan, E.M.; Jadhav, M.E. Diagnosis of dermoscopy images for the detection of skin lesions using SVM and KNN. In Proceedings of Third International Conference on Sustainable Computing; Springer: Singapore, 2022; pp. 125–134. [Google Scholar] [CrossRef]
- Senan, E.M.; Jadhav, M.E. Techniques for the Detection of Skin Lesions in PH 2 Dermoscopy Images Using Local Binary Pattern (LBP). In International Conference on Recent Trends in Image Processing and Pattern Recognition; Springer: Singapore, 2020; pp. 14–25. [Google Scholar] [CrossRef]
- Senan, E.M.; Abunadi, I.; Jadhav, M.E.; Fati, S.M. Score and Correlation Coefficient-Based Feature Selection for Predicting Heart Failure Diagnosis by Using Machine Learning Algorithms. Comput. Math. Methods Med. 2021, 2021, 1–16. [Google Scholar] [CrossRef]
- Mohammed, B.A.; Senan, E.M.; Al-Mekhlafi, Z.G.; Rassem, T.H.; Makbol, N.M.; Alanazi, A.A.; Almurayziq, T.S.; Ghaleb, F.A.; Sallam, A.A. Multi-Method Diagnosis of CT Images for Rapid Detection of Intracranial Hemorrhages Based on Deep and Hybrid Learning. Electronics 2022, 11, 2460. [Google Scholar] [CrossRef]
- Senan, E.M.; Mohammed Jadhav, M.E.; Rassem, T.H.; Aljaloud, A.S.; Mohammed, B.A.; Al-Mekhlafi, Z.G. Early Diagnosis of Brain Tumour MRI Images Using Hybrid Techniques between Deep and Machine Learning. Electronics 2022, 11, 2460. Available online: https://www.hindawi.com/journals/cmmm/2022/8330833/ (accessed on 13 February 2022). [CrossRef]
- Diniz, D.N.; Rezende, M.T.; Bianchi, A.G.C.; Carneiro, C.M.; Ushizima, D.M.; de Medeiros, F.N.S.; Souza, M.J.F. A Hierarchical Feature-Based Methodology to Perform Cervical Cancer Classification. Appl. Sci. 2021, 11, 4091. [Google Scholar] [CrossRef]
- Win, K.P.; Kitjaidure, Y.; Hamamoto, K.; Myo Aung, T. Computer-Assisted Screening for Cervical Cancer Using Digital Image Processing of Pap Smear Images. Appl. Sci. 2020, 10, 1800. [Google Scholar] [CrossRef]
- Chen, W.; Shen, W.; Gao, L.; Li, X. Hybrid Loss-Constrained Lightweight Convolutional Neural Networks for Cervical Cell Classification. Sensors 2022, 22, 3272. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.A.; Abdurahman, F.; Ayalew, Y.A. Single-cell conventional pap smear image classification using pre-trained deep neural network architectures. BMC Biomed. Eng. 2021, 3, 11. [Google Scholar] [CrossRef] [PubMed]
Phase | Training and Validation Phase | Testing Phase (20%) | |
---|---|---|---|
Classes | Training Phase (80%) | Validation Phase (20%) | |
cervix_dyk | 3800 | 800 | 1000 |
cervix_koc | 3800 | 800 | 1000 |
cervix_mep | 3800 | 800 | 1000 |
cervix_pab | 3800 | 800 | 1000 |
cervix_sfi | 3800 | 800 | 1000 |
Measure | VGG-16 | GoogLeNet |
---|---|---|
Accuracy % | 91.22 | 95.96 |
Specificity % | 97.6 | 98.64 |
Sensitivity % | 91.41 | 95.45 |
Precision % | 91.68 | 95.81 |
AUC % | 93.45 | 96.32 |
Measure | VGG-16 + SVM | GoogLeNet + SVM |
---|---|---|
Accuracy % | 97.5 | 96.8 |
Specificity % | 99.4 | 99.2 |
Sensitivity % | 97.6 | 96.8 |
Precision % | 97.72 | 96.9 |
AUC % | 98.43 | 98.21 |
Measure | ANN Based on Fused CNN |
---|---|
Accuracy % | 98.5 |
Specificity % | 99.8 |
Sensitivity % | 98.4 |
Precision % | 98.2 |
AUC % | 98.92 |
Fusion Features | VGG-16, FCH, GLCM and LBP | GoogLeNet, FCH, GLCM and LBP |
---|---|---|
Accuracy % | 99.4 | 99.3 |
Specificity % | 100 | 100 |
Sensitivity % | 99.35 | 99.12 |
Precision % | 99.42 | 99.23 |
AUC % | 99.89 | 99.56 |
Approaches | Classes | cervix_dyk | cervix_koc | cervix_mep | cervix_pab | cervix_sfi | Accuracy % | |
---|---|---|---|---|---|---|---|---|
Hybrid method | VGG-16 + SVM | 97.3 | 98 | 97.1 | 97.1 | 98.2 | 97.5 | |
GoogLeNet + SVM | 97.2 | 98.2 | 96 | 96 | 96.6 | 96.8 | ||
ANN classifier | VGG-16 + GoogLeNet | 98.1 | 99.1 | 98.4 | 98.2 | 98.6 | 98.5 | |
Fusion features | ANN classifier | VGG-16, FCH, GLCM and LBP | 99.3 | 99 | 99.6 | 99.5 | 99.6 | 99.4 |
GoogLeNet, FCH, GLCM and LBP | 99.4 | 99.5 | 99.2 | 99.3 | 99.3 | 99.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, B.A.; Senan, E.M.; Al-Mekhlafi, Z.G.; Alazmi, M.; Alayba, A.M.; Alanazi, A.A.; Alreshidi, A.; Alshahrani, M. Hybrid Techniques for Diagnosis with WSIs for Early Detection of Cervical Cancer Based on Fusion Features. Appl. Sci. 2022, 12, 8836. https://doi.org/10.3390/app12178836
Mohammed BA, Senan EM, Al-Mekhlafi ZG, Alazmi M, Alayba AM, Alanazi AA, Alreshidi A, Alshahrani M. Hybrid Techniques for Diagnosis with WSIs for Early Detection of Cervical Cancer Based on Fusion Features. Applied Sciences. 2022; 12(17):8836. https://doi.org/10.3390/app12178836
Chicago/Turabian StyleMohammed, Badiea Abdulkarem, Ebrahim Mohammed Senan, Zeyad Ghaleb Al-Mekhlafi, Meshari Alazmi, Abdulaziz M. Alayba, Adwan Alownie Alanazi, Abdulrahman Alreshidi, and Mona Alshahrani. 2022. "Hybrid Techniques for Diagnosis with WSIs for Early Detection of Cervical Cancer Based on Fusion Features" Applied Sciences 12, no. 17: 8836. https://doi.org/10.3390/app12178836
APA StyleMohammed, B. A., Senan, E. M., Al-Mekhlafi, Z. G., Alazmi, M., Alayba, A. M., Alanazi, A. A., Alreshidi, A., & Alshahrani, M. (2022). Hybrid Techniques for Diagnosis with WSIs for Early Detection of Cervical Cancer Based on Fusion Features. Applied Sciences, 12(17), 8836. https://doi.org/10.3390/app12178836