Whey Protein Isolate-Based Edible Coatings Incorporated with Jojoba Oil as a Novel Approach for Improving the Quality of Fresh-Cut Root Parsley during Refrigerated Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Film-Forming Solutions
2.3. Vegetable Coating
2.4. Dry Matter
2.5. pH Value
2.6. Hardness
2.7. Color Measurement
2.8. The Content of Polyphenols
2.9. The Content of Flavonoids
2.10. Microstructure
2.11. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of the Raw Material—Root Parsley
3.2. Effect of Coatings on the Hardness of Fresh-Cut Parsley during Storage
3.3. Effect of Coatings on the Color of Fresh-Cut Parsley during Storage
3.4. Effect of Coatings on the Content of Polyphenols of Fresh-Cut Parsley during Storage
3.5. Effect of Coatings on the Content of Flavonoids of Fresh-Cut Parsley during Storage
3.6. Microstructure of Fresh-Cut Parsley during Storage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirci, M.; Isaksson, O.; Seifert, R. Managing Perishability in the Fruit and Vegetable Supply Chains. Sustainability 2022, 14, 5378. [Google Scholar] [CrossRef]
- Basumatary, I.B.; Mukherjee, A.; Katiyar, V.; Kumar, S. Biopolymer-based nanocomposite films and coatings: Recent advances in shelf-life improvement of fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2022, 62, 1912–1935. [Google Scholar] [CrossRef] [PubMed]
- Mikus, M.; Galus, S. Food coating–materials, methods and applications in food industry. Food Sci. Technol. Qual. 2020, 125, 5–24. [Google Scholar] [CrossRef]
- Kowalska, H.; Marzec, A.; Domian, E.; Kowalska, J.; Ciurzynska, A.; Galus, S. Edible coatings as osmotic dehydration pretreatment in nutrient-enhanced fruit or vegetable snacks development: A review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5641–5674. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.A.A.; El-Sakhawy, M.; El-Sakhawy, M.A. Polysaccharides, Protein and Lipid -Based Natural Edible Films in Food Packaging: A Review. Carbohydr. Polym. 2020, 238, 116178. [Google Scholar] [CrossRef]
- Trajkovska Petkoska, A.; Daniloski, D.; D’Cunha, N.M.; Naumovski, N.; Broach, A.T. Edible packaging: Sustainable solutions and novel trends in food packaging. Food Res. Int. 2021, 140, 109981. [Google Scholar] [CrossRef]
- Bhargava, N.; Sharanagat, V.S.; Mor, R.S.; Kumar, K. Active and intelligent biodegradable packaging films using food and food waste-derived bioactive compounds: A review. Trends Food Sci. Technol. 2020, 105, 385–401. [Google Scholar] [CrossRef]
- Galus, S.; Lenart, A. Effect of protein concentration on kinetics of water vapour adsorption by coatings prepared on the basis of whey protein isolate. Food Sci. Technol. Qual. 2011, 4, 66–73. [Google Scholar] [CrossRef]
- Galus, S.; Kadzińska, J. Food applications of emulsion-based edible films and coatings. Trends Food Sci. Technol. 2015, 45, 273–283. [Google Scholar] [CrossRef]
- Kandasamy, S.; Yoo, J.; Yun, J.; Kang, H.-B.; Seol, K.-H.; Kim, H.-W.; Ham, J.-S. Application of Whey Protein-Based Edible Films and Coatings in Food Industries: An Updated Overview. Coatings 2021, 11, 1056. [Google Scholar] [CrossRef]
- Galus, S.; Lenart, A. Optical, mechanical, and moisture sorption properties of whey protein edible films. J. Food Process Eng. 2019, 42, e13245. [Google Scholar] [CrossRef]
- Galus, S.; Kadzińska, J. Gas barrier and wetting properties of whey protein isolate-based emulsion films. Polym. Eng. Sci. 2019, 59, E375–E383. [Google Scholar] [CrossRef]
- Cruz, V.; Rojas, R.; Saucedo-Pompa, S.; Martinez, D.G.; Aguilera-Carbo, A.F.; Alvarez, O.B.; Rodriguez, R.; Ruiz, J.; Aguilar, C.N. Improvement of Shelf Life and Sensory Quality of Pears Using a Specialized Edible Coating. J. Chem. 2015, 2015, 138707. [Google Scholar] [CrossRef]
- Din, A.; Nadeem, M.; Rafique, M.; Shabbir, M.A. Development and application of edible skin coatings to improve the quality of kinnow during storage. Acta Sci. Technol. 2015, 37, 111–116. [Google Scholar] [CrossRef]
- Al-Obaidi, J.R.; Halabi, M.F.; AlKhalifah, N.S.; Asanar, S.; Al-Soqeer, A.A.; Attia, M.F. A review on plant importance, biotechnological aspects, and cultivation challenges of jojoba plant. Biol. Res. 2017, 50, 25. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, S.S.; Elseehy, M.M.; Aljuaid, B.S.; El-Shehawi, A.M. Transcriptome Analysis of Jojoba (Simmondsia chinensis) during Seed Development and Liquid Wax Ester Biosynthesis. Plants 2020, 9, 588. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Daferera, D.; Polissiou, M.G.; Passam, H.C. The effect of salinity on the growth, yield and essential oils of turnip-rooted and leaf parsley cultivated within the Mediterranean region. J. Sci. Food Agric. 2009, 89, 1534–1542. [Google Scholar] [CrossRef]
- Al-Yousofy, F.; Gumaih, H.; Ibrahim, H.; Alasbahy, A. Parsley! Mechanism as antiurolithiasis remedy. Am. J. Clin. Exp. Urol. 2017, 5, 55–62. [Google Scholar]
- Elgasim, E.A.; Al-Wesali, M.S. Water activity and Hunter colour values of beef patties extended with Samh (Mesembryanthemum forsskalei Hochst) flour. Food Chem. 2000, 69, 181–185. [Google Scholar] [CrossRef]
- Poureini, F.; Najafpour, G.D.; Nikzad, M.; Najafzadehvarzi, H.; Mohammadi, M. Loading of apigenin extracted from parsley leaves on colloidal core-shell nanocomposite for bioavailability enhancement. Colloids Surf. A Physicochem. Eng. Asp. 2021, 625, 126867. [Google Scholar] [CrossRef]
- Grande Burgos, M.J.; López Aguayo, M.D.C.; Pérez Pulido, R.; Galvez, A.; Lucas, R. Analysis of the microbiota of refrigerated chopped parsley after treatments with a coating containing enterocin AS-48 or by high-hydrostatic pressure. Food Res. Int. 2017, 99, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Galus, S.; Kadzińska, J. Whey protein edible films modified with almond and walnut oils. Food Hydrocoll. 2016, 52, 78–86. [Google Scholar] [CrossRef]
- Bahorun, T.; Gressier, B.; Trotin, F.; Brunet, C.; Dine, T.; Luyckx, M.; Vasseur, J.; Cazin, M.; Cazin, J.C.; Pinkas, M. Oxygen species scavenging activity of phenolic extracts from hawthorn fresh plant organs and pharmaceutical preparations. Arzneim.-Forsch. 1996, 46, 1086–1089. [Google Scholar]
- Zlotek, U.; Wojcik, W. Effect of Coating Parsley Roots (Petroselinum Hortense) with Chitosan Film on Selected Characteristics Thereof during Storage. Zywnosc Nauka Technol. Jakosc 2012, 19, 75–85. [Google Scholar]
- Shrivastava, S.; Prasad, R.; Varma, A. Anatomy of Root from Eyes of a Microbiologist. In Root Engineering; Soil Biology; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Marquez, G.R.; Di Pierro, P.; Mariniello, L.; Esposito, M.; Giosafatto, C.V.L.; Porta, R. Fresh-cut fruit and vegetable coatings by transglutaminase-crosslinked whey protein/pectin edible films. LWT-Food Sci. Technol. 2017, 75, 124–130. [Google Scholar] [CrossRef]
- Ben-Fadhel, Y.; Cingolani, M.C.; Li, L.; Chazot, G.; Salmieri, S.; Horak, C.; Lacroix, M. Effect of γ-irradiation and the use of combined treatments with edible bioactive coating on carrot preservation. Food Packag. Shelf Life 2021, 28, 100635. [Google Scholar] [CrossRef]
- Shon, J.-H.; Choi, Y.-H. Effect of Edible Coatings Containing Soy Protein Isolate (SPI) on the Browning and Moisture Content of Cut Fruit and Vegetables. J. Appl. Biol. Chem. 2011, 54, 190–196. [Google Scholar] [CrossRef]
- Sharma, P.; Shehin, V.P.; Kaur, N.; Vyas, P. Application of edible coatings on fresh and minimally processed vegetables: A review. Int. J. Veg. Sci. 2018, 25, 295–314. [Google Scholar] [CrossRef]
- Pen, L.T.; Jiang, Y.M. Effects of chitosan coating on shelf life and quality of fresh-cut Chinese water chestnut. Lebensm.-Wiss. Technol. 2003, 36, 359–364. [Google Scholar] [CrossRef]
- Ghidelli, C.; Perez-Gago, M.B. Recent advances in modified atmosphere packaging and edible coatings to maintain quality of fresh-cut fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2018, 58, 662–679. [Google Scholar] [CrossRef]
- Hasan, S.M.K.; Ferrentino, G.; Scampicchio, M. Nanoemulsion as advanced edible coatings to preserve the quality of fresh-cut fruits and vegetables: A review. Int. J. Food Sci. Technol. 2020, 55, 1–10. [Google Scholar] [CrossRef]
- Kowalczyk, D.; Skrzypek, T.; Lupina, K. Effect of carboxymethyl cellulose/candelilla wax edible coating incorporated with ascorbic acid on the physicochemical and sensory qualities of prepackaged minimally processed carrots (Daucus carota L.) during cold storage. J. Food Process. Preserv. 2020, 44, e14713. [Google Scholar] [CrossRef]
- Maringgal, B.; Hashim, N.; Tawakkal, I.S.M.A.; Mohamed, M.T.M. Recent advance in edible coating and its effect on fresh/fresh-cut fruits quality. Trends Food Sci. Technol. 2020, 96, 253–267. [Google Scholar] [CrossRef]
Tested Feature | Mean ± Standard Deviation |
---|---|
Dry matter (%) | 15.61 ± 0.09 |
pH | 5.75 ± 0.02 |
Hardness (N) | 89.09 ± 3.75 |
L* | 84.49 ± 2.41 |
a* | −1.29 ± 0.19 |
b* | 11.15 ± 1.34 |
Hue tone (°) | 83.21 ± 1.85 |
Content of polyphenols (mg gallic acid/g d.m.) | 6.54 ± 0.17 |
Content of flavonoids (mg quercetin/g d.m.) | 49.96 ± 0.16 |
Storage Time (Days) | Hardness (N) | |||
---|---|---|---|---|
Type of Material | ||||
Control | WPI | WPI_JO_1% | WPI_JO_2% | |
0 | 59.32 ± 4.54 ab,B | 59.88 ± 4.41 b,B | 56.28 ± 4.26 ab,AB | 52.17 ± 5.43 a,A |
7 | 64.34 ± 4.52 b,A | 63.73 ±6.78 bc,A | 68.76 ± 7.42 c,A | 69.44 ± 7.48 bc,A |
14 | 60.84 ± 7.97 b,A | 58.82 ± 5.86 b,A | 63.82 ± 8.78 abc,A | 62.55 ± 7.57 b,A |
21 | 63.43 ± 7.59 b,AB | 71.05 ± 7.66 c,B | 55.22 ± 6.19 a,A | 72.28 ± 6.78 c,B |
28 | 50.98 ± 4.39 a,A | 48.33 ± 5.29 a,A | 66.23 ± 8.48 bc,B | 60.49 ± 5.01 ab,B |
Storage Time (Days) | Type of Material | |||
---|---|---|---|---|
Control | WPI | WPI_JO_1% | WPI_JO_2% | |
L* | ||||
0 | 79.88 ± 3.45 a,AB | 79.29 ± 2.50 b,A | 82.71 ± 2.04 b,B | 81.33 ± 2.39 b,AB |
7 | 80.69 ± 5.10 a,A | 84.07 ± 1.08 c,A | 83.20 ± 2.29 b,A | 81.57 ± 1.94 b,A |
14 | 81.83 ± 1.25 ab,B | 74.71 ± 4.29 a,A | 82.99 ± 2.51 b,B | 82.40 ± 2.72 b,B |
21 | 79.56 ± 3.01 a,B | 73.44 ± 5.33 a,A | 76.61 ± 1.90 a,AB | 72.54 ± 2.93 a,A |
28 | 85.33 ± 1.30 b,C | 80.95 ± 2.51 bc,A | 84.19 ± 1.54 b,BC | 82.33 ± 2.82 b,AB |
a* | ||||
0 | −1.20 ± 0.30 a,A | −1.24 ± 0.16 a,A | −1.44 ± 0.11 a,A | −1.43 ± 0.35 a,A |
7 | 0.43 ± 1.07 c,B | −0.97 ± 0.52 a,A | −0.66 ± 0.25 b,A | −0.42 ± 0.52 b,A |
14 | −0.01 ± 0.53 bc,A | 4.83 ± 1.87 b,B | −0.81 ± 0.13 ab,A | −0.75 ± 0.33 b,A |
21 | 0.51 ± 1.06 c,A | 6.07 ± 3.29 b,B | 4.52 ± 1.23 a,B | 6.50 ± 0.81 c,B |
28 | −0.61 ± 0.19 ab,A | 0.83 ± 1.18 a,B | −0.75 ± 0.35 ab,A | −0.48 ± 0.23 b,A |
b* | ||||
0 | 11.86 ± 1.20 a,A | 12.67 ± 2.25 a,A | 11.36 ± 1.50 a,A | 11.87 ± 1.46 a,A |
7 | 16.38 ± 2.61 b,B | 12.61 ± 3.87 a,A | 13.56 ± 1.59 b,AB | 13.22 ± 2.93 a,AB |
14 | 17.26 ± 1.86 b,B | 26.49 ± 1.40 c,C | 13.30 ± 0.76 b,A | 13.85 ± 1.13 a,A |
21 | 19.06 ± 3.20 b,A | 28.21 ± 2.98 c,B | 27.52 ± 1.88 c,B | 30.08 ± 1.83 b,B |
28 | 10.02 ± 1.23 a,A | 21.21 ± 2.96 b,C | 12.03 ± 1.42 ab,AB | 12.83 ± 1.91 a,B |
H [°] | ||||
0 | 84.08 ± 1.72 a,A | 84.24 ± 1.21 b,A | 82.67 ± 1.10 b,A | 82.99 ± 2.05 b,A |
7 | 87.70 ± 2.39 bc,B | 84.79 ± 1.66 b,A | 87.12 ± 1.28 c,AB | 87.50 ± 2.86 c,B |
14 | 88.66 ± 1.06 c,B | 79.71 ± 3.94 a,A | 86.52 ± 0.84 c,B | 86.87 ± 1.46 c,B |
21 | 87.70 ± 1.82 bc,B | 78.25 ± 5.70 a,A | 80.79 ± 2.07 a,A | 77.81 ± 1.40 a,A |
28 | 86.47 ± 1.18 b,A | 87.21 ± 2.08 b,A | 86.33 ± 1.73 c,A | 87.77 ± 1.21 c,A |
Storage Time (Days) | Polyphenols (mg GAE/g d.m.) | |||
---|---|---|---|---|
Type of Material | ||||
Control | WPI | WPI_JO_1% | WPI_JO_2% | |
0 | 4.32 ± 0.26 a,B | 3.61 ± 0.21 a,A | 3.13 ± 0.37 a,A | 5.97 ± 0.13 a,C |
7 | 4.02 ± 0.57 a,A | 5.11 ± 0.32 b,A | 7.21 ± 0.22 b,B | 7.56 ± 1.17 ab,B |
14 | 3.72 ± 0.17 a,A | 6.03 ± 0.35 c,B | 6.95 ± 0.05 b,C | 6.72 ± 0.13 ab,C |
21 | 8.60 ± 0.13 c,B | 7.55 ± 0.37 d,A | 9.38 ± 0.47 c,B | 7.41 ± 0.39 ab,A |
28 | 5.59 ± 0.05 b,A | 5.81 ± 0.09 bc,A | 9.82 ± 0.09 c,C | 7.77 ± 0.51 b,B |
Storage Time (Days) | Flavonoids (mg QE/g d.m.) | |||
---|---|---|---|---|
Type of Material | ||||
Control | WPI | WPI_JO_1% | WPI_JO_2% | |
0 | 22.61 ± 0.32 a,B | 21.08 ± 0.06 a,A | 26.22 ± 0.04 a,D | 23.65 ± 0.24 a,C |
7 | 24.72 ± 0.52 b,A | 25.40 ± 0.12 b,B | 27.16 ± 0.33 a,C | 34.00 ± 0.22 b,D |
14 | 37.91 ± 0.15 e,A | 40.81 ± 0.13 e,B | 43.27 ± 0.14 d,C | 48.43 ± 0.07 e,D |
21 | 33.80 ± 0.30 c,A | 32.36 ± 0.11 c,A | 39.55 ± 1.37 c,C | 37.28 ± 0.17 c,B |
28 | 35.53 ± 0.19 d,A | 39.73 ± 0.03 d,C | 36.89 ± 0.58 b,B | 40.60 ± 0.16 d,D |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galus, S.; Mikus, M.; Ciurzyńska, A.; Janowicz, M. Whey Protein Isolate-Based Edible Coatings Incorporated with Jojoba Oil as a Novel Approach for Improving the Quality of Fresh-Cut Root Parsley during Refrigerated Storage. Appl. Sci. 2022, 12, 9023. https://doi.org/10.3390/app12189023
Galus S, Mikus M, Ciurzyńska A, Janowicz M. Whey Protein Isolate-Based Edible Coatings Incorporated with Jojoba Oil as a Novel Approach for Improving the Quality of Fresh-Cut Root Parsley during Refrigerated Storage. Applied Sciences. 2022; 12(18):9023. https://doi.org/10.3390/app12189023
Chicago/Turabian StyleGalus, Sabina, Magdalena Mikus, Agnieszka Ciurzyńska, and Monika Janowicz. 2022. "Whey Protein Isolate-Based Edible Coatings Incorporated with Jojoba Oil as a Novel Approach for Improving the Quality of Fresh-Cut Root Parsley during Refrigerated Storage" Applied Sciences 12, no. 18: 9023. https://doi.org/10.3390/app12189023
APA StyleGalus, S., Mikus, M., Ciurzyńska, A., & Janowicz, M. (2022). Whey Protein Isolate-Based Edible Coatings Incorporated with Jojoba Oil as a Novel Approach for Improving the Quality of Fresh-Cut Root Parsley during Refrigerated Storage. Applied Sciences, 12(18), 9023. https://doi.org/10.3390/app12189023