Recent Advances in Encapsulation Techniques of Plant Growth-Promoting Microorganisms and Their Prospects in the Sustainable Agriculture
Abstract
:1. Introduction
2. Limitations of Conventional Bioformulation and the Development of Bioencapsulation
3. Encapsulation Techniques
3.1. Ionic Gelation
3.2. Emulsification
3.3. Spray Drying
4. Choice of Polymeric Carriers
4.1. Sodium Alginate
4.2. Chitosan
4.3. Chitin
5. Choice of Additives
5.1. Starch
5.2. Humic Acid
5.3. Clay Minerals
5.3.1. Bentonite
5.3.2. Perlite
5.3.3. Kaolin
5.4. Sugars
5.5. Skimmed Milk
6. Recent Advances in Encapsulated Biocontrol Agents
Microorganism | Carrier | Additives | Method | Purpose | Plant | References |
---|---|---|---|---|---|---|
Kosakonia radicincitans | Amidated pectin | Maltodextrin Sorbitol monosodium glutamate | Cross-linking (extrusion) | Osmoprotection and desalination | Radish | [76] |
Raoultella planticola | Sodium alginate | Bentonite | Cross-linking extrusion) | Biofertilizer | - | [59] |
Pseudomonas putida | Sodium alginate + paraffin | Bentonite | Emulsification (external gelation) | Plan growth promotion | - | [77] |
Pantoea agglomerans | Sodium alginate | - | Cross-linking (extrusion) | Desalination | Rice | [78] |
Methylobacterium oryzae | Sodium alginate + chitosan | - | Cross-linking (extrusion) | Seed germination and plant growth promotion | Tomato | [40] |
Klebsiella oxytoca + Bacillus subtilis | Sodium alginate | - | Cross-linking (extrusion) | Biocontrol of Rhizoctonia solani under saline conditions | Cotton | [75] |
Pseudomonas fluorescens | Sodium alginate | - | Cross-linking (extrusion) | Polychlorinated biphenyl degradation bioremediation | - | [74] |
Pseudomonas fluorescens | Sodium alginate + soybean oil | Gelatin | Emulsification (internal gelation) | Biocontrol of Fusarium solani | Potato | [25] |
Trichoderma viride | Sodium alginate | - | Cross-linking (extrusion) | Plant nutrition | - | [79] |
Beauveria bassiana | Sodium alginate | Bentonite | Cross-linking (extrusion) | Biocontrol | - | [80] |
Streptomyces fulvissimus | chitosan + gellan gum | - | Spray drying | Biocontrol of Gaeumannomyces graminis | Wheat | [24] |
Bacillus subtilis | Sodium alginate | Humic acid + glycerol | Cross-linking (extrusion) | Plant growth promotion | Lettuce | [52] |
Bacillus megaterium | Chitosan + maltodextrin | Glucose, sucrose, skimmed milk powder, trehalose, lactose, arabic gum, gelatin, modified starch, sodium alga acid, and β-cyclodextrin | Spray drying | Bioremediation of salinized soils | - | [29] |
Azospirillum brasilense | Sodium alginate | Humic acid + trehalose + peat | Cross-linking (extrusion) | Plant growth promotion | Wheat | [55] |
Pantoea agglomerans | Sodium alginate | - | Cross-linking (extrusion) | Biocontrol of Erwinia amylovora | Apple | [16] |
Pseudomonas putida | Sodium alginate + paraffin | Perlite | Emulsification | Plant growth promotion | Arabidopsis thaliana | [26] |
Pseudomonas fluorescens + Pseudomonas putida | Eudragit + methacrylic copolymer | Silica | Spray drying | Biofertilizer | - | [81] |
Streptomycetes sp. | Sodium alginate | Kaolin + starch + talc | Cross-linking (extrusion) | Biocontrol of Rhizoctonia solani | Tomato | [66] |
Beauveria bassiana | Sodium alginate | Peanut oil | Cross-linking (extrusion) | Biocontrol of Solenopsis invicta | None | [82] |
Bacillus subtilis + Pseudomonas corrugata | Sodium alginate | Skimmed milk | Cross-linking (extrusion) | Plant growth promotion | Maize | [83] |
Pseudomonas fluorescens + Burkholderia cepacia | Sodium alginate | Skimmed milk | Cross-linking (extrusion) | Biofertilizer in salinized soil | Wheat | [73] |
Klebsiella oxytoca | Sodium alginate | - | Cross-linking (extrusion) | Biofertilizer in salinized soil | Cotton | [84] |
Sinorhizobium meliloti | Canola oil + xanthan gum | - | Emulsification | Nodulation and plant growth promotion | Alfalfa | [85] |
Bacillus subtilis | Alginate | Bentonite + starch + titanium dioxide nanoparticles | Cross-linking (extrusion) | Biocontrol of Rhizoctonia solani and plant growth promotion | Beans | [86] |
Pseudomonas putida + Bacillus subtilis | Sodium alginate | Humic acid | Cross-linking (extrusion) | Plant growth promotion | Lettuce | [54] |
7. Recent Advances in Encapsulated Biofertilizers and Growth Stimulator Agents
8. Recent Advances in Encapsulated Biosensors and Bioremediation Agents
9. Nanotechnological Application in PGPMs Bioencapsulation
Microorganism | Carrier | Additives | Method | Purpose | Plant | References |
---|---|---|---|---|---|---|
Bacillus subtilis | Alginate | Bentonite + starch + titanium dioxide nanoparticles | Cross-linking (extrusion) | Biocontrol of Rhizoctonia solani and plant growth promotion | Beans | [86] |
Pseudomonas sp. | Alginate | Salicylic acid + zinc oxide nanoparticles | Cross-linking (extrusion) | Biocontrol of Sclerotium rolfsii and plant growth promotion | Oryza sativa | [91] |
Pantoea agglomerans + Burkholderia caribensis | Polyvinyl alcohol | Nanofibers | Electrospinning | Plant growth promotion | Soybean | [92] |
10. Current State and Future Perspectives
- −
- Industrial and large-scale production and field application of encapsulated bioformulations;
- −
- Evaluation of the performance of encapsulated PGPMs in extreme environments and the long-term effect of interactions of PGPMs with host plants at the molecular, genetic, and physiological levels;
- −
- In-depth evaluation of the improvement of formulations by combining several additives, where the concentration ratios must be carefully controlled;
- −
- Expanding the target crop type and species variation as the majority of work focuses on cereals, legumes, and some vegetables;
- −
- Determination of the effect of the inoculation of polymeric beads on the plant microbiome, in particular on its functioning and its structure;
- −
- Estimation of the optimization of the cost of the formulations and the possibilities of their marketing.
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shameer, S.; Prasad, T.N.V.K.V. Plant growth promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses. Plant Growth Regul. 2018, 84, 603–615. [Google Scholar] [CrossRef]
- Gupta, G.; Parihar, S.S.; Ahirwar, N.K.; Snehi, S.K.; Singh, V. Plant growth promoting rhizobacteria (PGPR): Current and future prospects for development of sustainable agriculture. J. Microb. Biochem. Technol. 2015, 7, 96–102. [Google Scholar] [CrossRef]
- Chaudhary, T.; Dixit, M.; Gera, R.; Shukla, A.K.; Prakash, A.; Gupta, G.; Shukla, P. Techniques for improving formulations of bioinoculants. 3 Biotech. 2020, 10, 199. [Google Scholar] [CrossRef]
- Rani, U.; Kumar, V. Microbial bioformulations: Present and future aspects. In Nanobiotechnology in Bioformulations; Nanotechnology in the Life Sciences Series; Prasad, R., Kumar, V., Kumar, M., Choudhary, D., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Ijaz, M.; Ali, Q.; Ashraf, S.; Kamran, M.; Rehman, A. Development of future bioformulations for sustainable agriculture. In Microbiome in Plant Health and Disease; Kumar, V., Prasad, R., Kumar, M., Choudhary, D., Eds.; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- John, R.P.; Tyagi, R.D.; Brar, S.K.; Surampalli, R.Y.; Prévost, D. Bio-encapsulation of microbial cells for targeted agricultural delivery. Crit. Rev. Biotechnol. 2011, 31, 211–226. [Google Scholar] [CrossRef] [PubMed]
- Vassilev, N.; Vassileva, M.; Martos, V.; Garcia del Moral, L.F.; Kowalska, J.; Tylkowski, B.; Malusá, E. Formulation of microbial inoculants by encapsulation in natural polysaccharides: Focus on beneficial properties of carrier additives and derivatives. Front. Plant Sci. 2020, 11, 270. [Google Scholar] [CrossRef]
- Burges, H.D. Formulation of Microbial Biopesticides: Beneficial Microorganisms, Nematodes and Seed Treatments; Springer: Dordrecht, The Netherlands, 2012; p. 412. [Google Scholar] [CrossRef]
- Malusá, E.; Sas-Paszt, L.; Ciesielska, J. Technologies for beneficial microorganisms inocula used as biofertilizers. Sci. World J. 2012, 2012, 491206. [Google Scholar] [CrossRef]
- Albareda, M.; Rodríguez-Navarro, D.N.; Camacho, M.; Temprano, F.J. Alternatives to peat as a carrier for rhizobia inoculants: Solid and liquid formulations. Soil Biol. Biochem. 2008, 40, 2771–2779. [Google Scholar] [CrossRef]
- Buntić, A.V.; Stajković-Srbinović, O.S.; Knežević, M.M.; Kuzmanović, Đ.Ž.; Rasulić, N.V.; Delić, D.I. Development of liquid rhizobial inoculants and pre-inoculation of alfalfa seeds. Arch. Biol. Sci. 2019, 71, 379–387. [Google Scholar] [CrossRef]
- Brar, S.K.; Verma, M.; Tyagi, R.D.; Valéro, J.R. Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochem. 2006, 41, 323–342. [Google Scholar] [CrossRef]
- Bashan, Y.; de-Bashan, L.E.; Prabhu, S.R.; Hernandez, J.P. Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013). Plant Soil 2014, 378, 1–33. [Google Scholar] [CrossRef]
- Çakmakçı, R. A review of biological fertilizers current use, new approaches, and future perspectives. Int. J. Innov. Stu. Sci. Eng. Technol. 2019, 5, 83–92. [Google Scholar]
- Bashan, Y.; de-Bashan, L.E.; Prabhu, S.R. Superior polymeric formulations and emerging innovative products of bacterial inoculants for sustainable agriculture and the environment. In Agriculturally Important Microorganisms; Singh, H., Sarma, B., Keswani, C., Eds.; Springer: Singapore, 2016. [Google Scholar] [CrossRef]
- Kim, I.Y.; Pusey, P.L.; Zhao, Y.; Korban, S.S.; Choi, H.; Kim, K.K. Controlled release of Pantoea agglomerans E325 for biocontrol of fire blight disease of apple. J. Control. Release 2012, 161, 109–115. [Google Scholar] [CrossRef]
- Bashan, N.O.G.A. Inoculant formulations are essential for successful inoculation with plant growth-promoting bacteria and business opportunities. Indian Phytopathol. 2016, 69, 739–743. [Google Scholar]
- Bashan, Y.; Hernandez, J.P.; Leyva, L.A.; Bacilio, M. Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. Biol. Fertil. Soils 2002, 35, 359–368. [Google Scholar] [CrossRef]
- Hudson, D.; Margaritis, A. Biopolymer nanoparticle production for controlled release of biopharmaceuticals. Crit. Rev. Biotechnol. 2014, 34, 161–179. [Google Scholar] [CrossRef] [PubMed]
- Vejan, P.; Khadiran, T.; Abdullah, R.; Ismail, S.; Dadrasnia, A. Encapsulation of plant growth promoting rhizobacteria—Prospects and potential in agricultural sector: A review. J. Plant Nutr. 2019, 42, 2600–2623. [Google Scholar] [CrossRef]
- Vemmer, M.; Patel, A.V. Review of encapsulation methods suitable for microbial biological control agents. Biol. Control. 2013, 67, 380–389. [Google Scholar] [CrossRef]
- Vinceković, M.; Jurić, S.; Đermić, E.; Topolovec-Pintarić, S. Kinetics and mechanisms of chemical and biological agents release from biopolymeric microcapsules. J. Agric. Food Chem. 2017, 65, 9608–9617. [Google Scholar] [CrossRef]
- Anandhakumar, S.; Krishnamoorthy, G.; Ramkumar, K.M.; Raichur, A.M. Preparation of collagen peptide functionalized chitosan nanoparticles by ionic gelation method: An effective carrier system for encapsulation and release of doxorubicin for cancer drug delivery. Mater. Sci. Eng. C 2017, 70, 378–385. [Google Scholar] [CrossRef]
- Saberi Riseh, R.; Skorik, Y.A.; Thakur, V.K.; Moradi Pour, M.; Tamanadar, E.; Noghabi, S.S. Encapsulation of plant biocontrol bacteria with alginate as a main polymer material. Int. J. Mol. Sci. 2021, 22, 11165. [Google Scholar] [CrossRef]
- Pour, M.M.; Saberi-Riseh, R.; Mohammadinejad, R.; Hosseini, A. Investigating the formulation of alginate-gelatin encapsulated Pseudomonas fluorescens (VUPF5 and T17-4 strains) for controlling Fusarium solani on potato. Int. J. Biol. Macromol. 2019, 133, 603–613. [Google Scholar] [CrossRef]
- Liffourrena, A.S.; Lucchesi, G.I. Alginate-perlite encapsulated Pseudomonas putida A (ATCC 12633) cells: Preparation, characterization and potential use as plant inoculants. J. Biotechnol. 2018, 278, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Schoebitz, M.; López Belchí, M.D. Encapsulation techniques for plant growth-promoting rhizobacteria. In Bioformulations: For Sustainable Agriculture; Arora, N., Mehnaz, S., Balestrini, R., Eds.; Springer: New Delhi, India, 2016. [Google Scholar] [CrossRef]
- Reineccius, G. Off-flavors in foods. Crit. Rev. Food Sci. Nutr. 1991, 29, 381–402. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.; Wang, D.; Jiang, M.; Chu, S.; Wang, B.; Zhi, Y.; Zhou, P.; Zhang, D. Microencapsulation of Bacillus megaterium NCT-2 and its effect on remediation of secondary salinization soil. J. Microencapsul. 2020, 37, 134–143. [Google Scholar] [CrossRef]
- Saberi-Riseh, R.; Moradi-Pour, M. A novel encapsulation of Streptomyces fulvissimus Uts22 by spray drying and its biocontrol efficiency against Gaeumannomyces graminis, the causal agent of take-all disease in wheat. Pest Manag. Sci. 2021, 77, 4357–4364. [Google Scholar] [CrossRef] [PubMed]
- Costa, E.; Teixidó, N.; Usall, J.; Fons, E.; Gimeno, V.; Delgado, J.; Viñas, I. Survival of Pantoea agglomerans strain CPA-2 in a spray-drying process. J. Food Prot. 2002, 65, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Dobrinčić, A.; Balbino, S.; Zorić, Z.; Pedisić, S.; Bursać Kovačević, D.; Elez Garofulić, I.; Dragović-Uzelac, V. Advanced technologies for the extraction of marine brown algal polysaccharides. Mar. Drugs 2020, 18, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- dos Santos Silva, M.; Cocenza, D.S.; Grillo, R.; de Melo, N.F.S.; Tonello, P.S.; de Oliveira, L.C.; Cassimiro, D.L.; Rosa, A.H.; Fraceto, L.F. Paraquat-loaded alginate/chitosan nanoparticles: Preparation, characterization and soil sorption studies. J. Hazard. Mater. 2011, 190, 366–374. [Google Scholar] [CrossRef]
- Tønnesen, H.H.; Karlsen, J. Alginate in drug delivery systems. Drug Dev. Ind. Pharm. 2002, 28, 621–630. [Google Scholar] [CrossRef]
- Simó, G.; Fernández-Fernández, E.; Vila-Crespo, J.; Ruipérez, V.; Rodríguez-Nogales, J.M. Research progress in coating techniques of alginate gel polymer for cell encapsulation. Carbohydr. Polym. 2017, 170, 1–14. [Google Scholar] [CrossRef]
- Sosnik, A. Alginate particles as platform for drug delivery by the oral route: State-of-the-art. ISRN Pharmaceut. 2014, 2014, 926157. [Google Scholar] [CrossRef] [PubMed]
- Thakur, S.; Sharma, B.; Verma, A.; Chaudhary, J.; Tamulevicius, S.; Thakur, V.K. Recent progress in sodium alginate based sustainable hydrogels for environmental applications. J. Clean. Prod. 2018, 198, 143–159. [Google Scholar] [CrossRef]
- Montanucci, P.; Terenzi, S.; Santi, C.; Pennoni, I.; Bini, V.; Pescara, T.; Basta, G.; Calafiore, R. Insights in behavior of variably formulated alginate-based microcapsules for cell transplantation. BioMed Res. Int. 2015, 2015, 965804. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Thakur, S.; Mamba, G.; Gupta, R.K.; Thakur, P.; Thakur, V.K. Graphite modified sodium alginate hydrogel composite for efficient removal of malachite green dye. Int. J. Biol. Macromol. 2020, 148, 1130–1139. [Google Scholar] [CrossRef] [PubMed]
- Chanratana, M.; Han, G.H.; Melvin Joe, M.; Roy Choudhury, A.; Sundaram, S.; Halim, M.A.; Sa, T. Evaluation of chitosan and alginate immobilized Methylobacterium oryzae CBMB20 on tomato plant growth. Arc. Agron. Soil Sci. 2018, 64, 1489–1502. [Google Scholar] [CrossRef]
- Naveed, M.; Phil, L.; Sohail, M.; Hasnat, M.; Baig, M.M.F.A.; Ihsan, A.U.; Shumzaid, M.; Kakar, M.U.; Khan, T.M.; Akabar, M.D.; et al. Chitosan oligosaccharide (COG): An overview. Int. J. Biol. Macromol. 2019, 129, 827–843. [Google Scholar] [CrossRef]
- Muxika, A.; Etxabide, A.; Uranga, J.; Guerrero, P.; De La Caba, K. Chitosan as a bioactive polymer: Processing, properties and applications. Int. J. Biol. Macromol. 2017, 105, 1358–1368. [Google Scholar] [CrossRef]
- Qu, B.; Luo, Y. Chitosan-based hydrogel beads: Preparations, modifications and applications in food and agriculture sectors—A review. Int. J. Biol. Macromol. 2020, 152, 437–448. [Google Scholar] [CrossRef]
- Belščak-Cvitanović, A.; Komes, D.; Karlović, S.; Djaković, S.; Špoljarić, I.; Mršić, G.; Ježek, D. Improving the controlled delivery formulations of caffeine in alginate hydrogel beads combined with pectin, carrageenan, chitosan and psyllium. Food Chem. 2015, 167, 378–386. [Google Scholar] [CrossRef]
- Perez, J.J.; Francois, N.J.; Maroniche, G.A.; Borrajo, M.P.; Pereyra, M.A.; Creus, C.M. A novel, green, low-cost chitosan-starch hydrogel as potential delivery system for plant growth-promoting bacteria. Carbohydr. Polym. 2018, 202, 409–417. [Google Scholar] [CrossRef]
- Hudson, S.M.; Jenkins, D.W. Chitin and Chitosan, Encyclopedia of Polymer Science and Technology, 3rd ed.; Wiley Interscience: New York, NY, USA, 2002; Available online: www.interscience.com (accessed on 7 June 2022).
- Tester, R.F.; Karkalas, J.; Qi, X. Starch—Composition, fine structure and architecture. J. Cereal. Sci. 2004, 39, 151–165. [Google Scholar] [CrossRef]
- Shasha, B.S.; Trimnell, D.; Otey, F.H. Starch–borate complexes for EPTC encapsulation. J. Appl. Polym. Sci. 1984, 29, 67–73. [Google Scholar] [CrossRef]
- Schoebitz, M.; Simonin, H.; Poncelet, D. Starch filler and osmoprotectants improve the survival of rhizobacteria in dried alginate beads. J. Microencapsul. 2012, 29, 532–538. [Google Scholar] [CrossRef]
- Olivares, F.L.; Busato, J.G.; de Paula, A.M.; da Silva Lima, L.; Aguiar, N.O.; Canellas, L.P. Plant growth promoting bacteria and humic substances: Crop promotion and mechanisms of action. Chem. Biol. Technol. Agric. 2017, 4, 1–13. [Google Scholar] [CrossRef]
- Young, C.C.; Rekha, P.D.; Lai, W.A.; Arun, A.B. Encapsulation of plant growth-promoting bacteria in alginate beads enriched with humic acid. Biotechnol. Bioeng. 2006, 95, 76–83. [Google Scholar] [CrossRef]
- De Melo, B.A.G.; Motto, F.L.; Santana, M.H.A. Humic acids: Structural properties and multiple functionalities for novel technological developments. Mater. Sci. Eng. C 2016, 62, 967–974. [Google Scholar] [CrossRef]
- Nardi, S.; Ertani, A.; Francioso, O. Soil–root cross-talking: The role of humic substances. J. Plant Nutr. Soil Sci. 2017, 180, 5–13. [Google Scholar] [CrossRef]
- Rekha, P.D.; Lai, W.A.; Arun, A.B.; Young, C.C. Effect of free and encapsulated Pseudomonas putida CC-FR2-4 and Bacillus subtilis CC-pg104 on plant growth under gnotobiotic conditions. Bioresour. Technol. 2007, 98, 447–451. [Google Scholar] [CrossRef]
- Zago, S.L.; dos Santos, M.F.; Konrad, D.; Fiorini, A.; Rosado, F.R.; Missio, R.F.; Vendruscolo, E.C.G. Shelf life of Azospirillum brasilense in alginate beads enriched with trehalose and humic acid. J. Agric. Sci. 2019, 11, 269–280. [Google Scholar] [CrossRef]
- Fomina, M.; Skorochod, I. Microbial interaction with clay minerals and its environmental and biotechnological implications. Minerals. 2020, 10, 861. [Google Scholar] [CrossRef]
- Li, J.; Lu, J.; Li, Y. Carboxylmethylcellulose/bentonite composite gels: Water sorption behavior and controlled release of herbicide. J. Appl. Polym. Sci. 2009, 112, 261–268. [Google Scholar] [CrossRef]
- Zohar-Perez, C.; Chernin, L.; Chet, I.; Nussinovitch, A. Structure of dried cellular alginate matrix containing fillers provides extra protection for microorganisms against UVC radiation. Radiat. Res. 2003, 160, 198–204. [Google Scholar] [CrossRef]
- He, Y.; Wu, Z.; Tu, L.; Han, Y.; Zhang, G.; Li, C. Encapsulation and characterization of slow-release microbial fertilizer from the composites of bentonite and alginate. Appl. Clay Sci. 2015, 109, 68–75. [Google Scholar] [CrossRef]
- Wu, Z.; Guo, L.; Qin, S.; Li, C. Encapsulation of R. planticola Rs-2 from alginate-starch-bentonite and its controlled release and swelling behavior under simulated soil conditions. J. Indust. Microbiol. Biotechnol. 2012, 39, 317–327. [Google Scholar] [CrossRef]
- He, Y.; Wu, Z.; Ye, B.C.; Wang, J.; Guan, X.; Zhang, J. Viability evaluation of alginate-encapsulated Pseudomonas putida Rs-198 under simulated salt-stress conditions and its effect on cotton growth. Eur. J. Soil Biol. 2016, 75, 135–141. [Google Scholar] [CrossRef]
- Lobo, C.B.; Tomás, M.S.J.; Viruel, E.; Ferrero, M.A.; Lucca, M.E. Development of low-cost formulations of plant growth-promoting bacteria to be used as inoculants in beneficial agricultural technologies. Microbiol. Res. 2019, 219, 12–25. [Google Scholar] [CrossRef]
- Sari, A.; Sahinoglu, G.; Tuzen, M. Antimony (III) adsorption from aqueous solution using raw perlite and Mn-modified perlite: Equilibrium, thermodynamic, and kinetic studies. Indust. Eng. Chem. Res. 2012, 51, 6877–6886. [Google Scholar] [CrossRef]
- Murray, H.H. Kaolin applications. In Applied Clay Mineralogy, Occurrences, Processing and Application of Kaolins, Bentonites, Palygorskite-Sepiolite, and Common Clays; Murray, H.H., Ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2006; Volume 2, pp. 85–109. [Google Scholar] [CrossRef]
- Zacky, F.A.; Ting, A.S.Y. Biocontrol of Fusarium oxysporum f. sp. cubense tropical race 4 by formulated cells and cell-free extracts of Streptomyces griseus in sterile soil environment. Biocontrol Sci. Technol. 2015, 25, 685–696. [Google Scholar] [CrossRef]
- Sabaratnam, S.; Traquair, J.A. Formulation of a Streptomyces biocontrol agent for the suppression of Rhizoctonia damping-off in tomato transplants. Biol. Control. 2002, 23, 245–253. [Google Scholar] [CrossRef]
- Berninger, T.; González López, Ó.; Bejarano, A.; Preininger, C.; Sessitsch, A. Maintenance and assessment of cell viability in formulation of non-sporulating bacterial inoculants. Microb. Biotechnol. 2018, 11, 277–301. [Google Scholar] [CrossRef]
- Morgan, C.A.; Herman, N.; White, P.A.; Vesey, G. Preservation of micro-organisms by drying; a review. J. Microbiol. Methods 2006, 66, 183–193. [Google Scholar] [CrossRef]
- García, A.H. Anhydrobiosis in bacteria: From physiology to applications. J. Biosci. 2011, 36, 939–950. [Google Scholar] [CrossRef] [PubMed]
- Streeter, J.G. Effect of trehalose on survival of Bradyrhizobium japonicum during desiccation. J. Appl. Microbiol. 2003, 95, 484–491. [Google Scholar] [CrossRef]
- Costa, E.; Usall, J.; Teixido, N.; Garcia, N.; Vinas, I. Effect of protective agents, rehydration media and initial cell concentration on viability of Pantoea agglomerans strain CPA-2 subjected to freeze-drying. J. Appl. Microbiol. 2000, 89, 793–800. [Google Scholar] [CrossRef]
- Mishra, S.; Kumar, P.; Malik, A. Preparation, characterization, and insecticidal activity evaluation of three different formulations of Beauveria bassiana against Musca domestica. Parasitol. Res. 2013, 112, 3485–3495. [Google Scholar] [CrossRef]
- Saxena, J. Efficacy of rhizobacterial strains encapsulated in nontoxic biodegradable gel matrices to promote growth and yield of wheat plants. Appl. Soil Ecol. 2011, 48, 301–308. [Google Scholar] [CrossRef]
- Power, B.; Liu, X.; Germaine, K.J.; Ryan, D.; Brazil, D.; Dowling, D.N. Alginate beads as a storage, delivery and containment system for genetically modified PCB degrader and PCB biosensor derivatives of Pseudomonas fluorescens F113. J. Appl. Microbiol. 2011, 110, 1351–1358. [Google Scholar] [CrossRef]
- Guo, L.; Wu, Z.; Rasool, A.; Li, C. Effects of free and encapsulated co-culture bacteria on cotton growth and soil bacterial communities. Eur. J. Soil Biol. 2012, 53, 16–22. [Google Scholar] [CrossRef]
- Barrera, M.C.; Jakobs-Schoenwandt, D.; Gómez, M.I.; Serrato, J.; Ruppel, S.; Patel, A.V. Formulating bacterial endophyte: Pre-conditioning of cells and the encapsulation in amidated pectin beads. Biotechnol. Rep. 2020, 26, e00463. [Google Scholar] [CrossRef]
- Li, X.; Wu, Z.; He, Y.; Ye, B.C.; Wang, J. Preparation and characterization of monodisperse microcapsules with alginate and bentonite via external gelation technique encapsulating Pseudomonas putida Rs-198. J. Biomater. Sci. Polym. Ed. 2017, 28, 1556–1571. [Google Scholar] [CrossRef] [PubMed]
- Bhise, K.K.; Dandge, P.B. Alleviation of salinity stress in rice plant by encapsulated salt tolerant plant growth promoting bacteria Pantoea agglomerans strain KL and its root colonization ability. Arch. Agron. Soil Sci. 2019, 65, 1955–1968. [Google Scholar] [CrossRef]
- Jurić, S.; Đermić, E.; Topolovec-Pintarić, S.; Bedek, M.; Vinceković, M. Physicochemical properties and release characteristics of calcium alginate microspheres loaded with Trichoderma viride spores. J. Integr. Agric. 2019, 18, 2534–2548. [Google Scholar] [CrossRef]
- Batista, D.P.C.; De Oliveira, I.N.; Ribeiro, A.R.B.; Fonseca, E.J.S.; Santos-Magalhães, N.S.; de Sena-Filho, J.G.; Teodoro, A.V.; Grillo, L.A.M.; de Almeida, R.S.; Dornelas, C.B. Encapsulation and release of Beauveria bassiana from alginate–bentonite nanocomposite. RSC Adv. 2017, 7, 26468–26477. [Google Scholar] [CrossRef]
- Amiet-Charpentier, C. Rhizobacteria microencapsulation: Properties of microparticles obtained by spray-drying. J. Microencapsul. 1999, 16, 215–229. [Google Scholar] [CrossRef] [PubMed]
- Bextine, B.R.; Thorvilson, H.G. Field applications of bait-formulated Beauveria bassiana alginate pellets for biological control of the red imported fire ant (Hymenoptera: Formicidae). Environ. Entomol. 2002, 31, 746–752. [Google Scholar] [CrossRef]
- Trivedi, P.; Pandey, A.; Palni, L.M.S. Carrier-based preparations of plant growth-promoting bacterial inoculants suitable for use in cooler regions. World J. Microbiol. Biotechnol. 2005, 21, 941–945. [Google Scholar] [CrossRef]
- Wu, Z.; Peng, Y.; Guo, L.; Li, C. Root colonization of encapsulated Klebsiella oxytoca Rs-5 on cotton plants and its promoting growth performance under salinity stress. Eur. J. Soil Biol. 2014, 60, 81–87. [Google Scholar] [CrossRef]
- John, R.P.; Tyagi, R.D.; Brar, S.K.; Prévost, D.; Surampalli, R.Y. Effect of emulsion formulation of Sinorhizobium meliloti and pre-inoculated seeds on alfalfa nodulation and growth: A pouch study. J. Plant Nutr. 2013, 36, 231–242. [Google Scholar] [CrossRef]
- Saberi-Rise, R.; Moradi-Pour, M. The effect of Bacillus subtilis Vru1 encapsulated in alginate–bentonite coating enriched with titanium nanoparticles against Rhizoctonia solani on bean. Int. J. Biol. Macromol. 2020, 152, 1089–1097. [Google Scholar] [CrossRef]
- Zhuang, X.; Chen, J.; Shim, H.; Bai, Z. New advances in plant growth-promoting rhizobacteria for bioremediation. Environ. Int. 2007, 33, 406–413. [Google Scholar] [CrossRef]
- Adam, W.; Lukacs, Z.; Kahle, C.; Saha-Möller, C.R.; Schreier, P. Biocatalytic asymmetric hydroxylation of hydrocarbons by free and immobilized Bacillus megaterium cells. J. Mol. Catal. B Enzym. 2001, 11, 377–385. [Google Scholar] [CrossRef]
- Manjunatha, R.L.; Naik, D.; Usharani, K.V. Nanotechnology application in agriculture: A review. J. Pharmacogn. Phytochem. 2019, 8, 1073–1083. [Google Scholar]
- Nayana, A.R.; Joseph, B.J.; Jose, A.; Radhakrishnan, E.K. Nanotechnological advances with PGPR applications. In Sustainable Agriculture Reviews 41; Hayat, S., Pichtel, J., Faizan, M., Fariduddin, Q., Eds.; Sustainable Agriculture Reviews; Springer: Cham, Switzerland, 2020; Volume 41. [Google Scholar] [CrossRef]
- Panichikkal, J.; Prathap, G.; Nair, R.A.; Krishnankutty, R.E. Evaluation of plant probiotic performance of Pseudomonas sp. encapsulated in alginate supplemented with salicylic acid and zinc oxide nanoparticles. Int. J. Biol. Macromol. 2021, 166, 138–143. [Google Scholar] [CrossRef] [PubMed]
- De Gregorio, P.R.; Michavila, G.; Ricciardi Muller, L.; de Souza Borges, C.; Pomares, M.F.; Saccol de Sá, E.L.; Pereira, C.; Vincent, P.A. Beneficial rhizobacteria immobilized in nanofibers for potential application as soybean seed bioinoculants. PLoS ONE 2017, 12, e0176930. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balla, A.; Silini, A.; Cherif-Silini, H.; Chenari Bouket, A.; Alenezi, F.N.; Belbahri, L. Recent Advances in Encapsulation Techniques of Plant Growth-Promoting Microorganisms and Their Prospects in the Sustainable Agriculture. Appl. Sci. 2022, 12, 9020. https://doi.org/10.3390/app12189020
Balla A, Silini A, Cherif-Silini H, Chenari Bouket A, Alenezi FN, Belbahri L. Recent Advances in Encapsulation Techniques of Plant Growth-Promoting Microorganisms and Their Prospects in the Sustainable Agriculture. Applied Sciences. 2022; 12(18):9020. https://doi.org/10.3390/app12189020
Chicago/Turabian StyleBalla, Amel, Allaoua Silini, Hafsa Cherif-Silini, Ali Chenari Bouket, Faizah N. Alenezi, and Lassaad Belbahri. 2022. "Recent Advances in Encapsulation Techniques of Plant Growth-Promoting Microorganisms and Their Prospects in the Sustainable Agriculture" Applied Sciences 12, no. 18: 9020. https://doi.org/10.3390/app12189020
APA StyleBalla, A., Silini, A., Cherif-Silini, H., Chenari Bouket, A., Alenezi, F. N., & Belbahri, L. (2022). Recent Advances in Encapsulation Techniques of Plant Growth-Promoting Microorganisms and Their Prospects in the Sustainable Agriculture. Applied Sciences, 12(18), 9020. https://doi.org/10.3390/app12189020