The Effect of Acaricide Control of the Two-Spotted Spider Mite Tetranychus urticae Koch on the Cultivation of Sugar Beet (Beta vulgaris L.) and on the Size and Quality of the Yield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Experimental Site. Characteristics of the Soil
2.2. Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. Crops and Livestock Products. 2022. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 20 April 2022).
- CFDS European Association of Sugar Manufacturers. 2022. Available online: https://cefs.org/resources/statistics (accessed on 23 May 2022).
- Pidgeon, J.D.; Werker, A.R.; Jaggard, K.W.; Richter, G.M.; Lister, D.H.; Jones, P.D. Climatic impact on the productivity of sugar beet in Europe, 1961–1995. Agric. For. Meteorol. 2001, 109, 27–37. [Google Scholar] [CrossRef]
- Podlaski, S.; Chołuj, D.; Wiśniewska, A. Development of sugar beet yield in relation to selected environmental conditions. Kształtowanie się plonu buraka cukrowego w zależności od wybranych czynników środowiskowych. Zesz. Probl. Postępów Nauk Rol. 2017, 590, 59–71. [Google Scholar] [CrossRef]
- Hoffmann, C.M.; Kenter, C. Yield Potential of Sugar Beet—Have We Hit the Ceiling? Front. Plant Sci. 2018, 9, 289. [Google Scholar] [CrossRef]
- Bouras, H.; Bouaziz, A.; Bouazzama, B.; Hirich, A.; Choukr-Allah, R. How Phosphorus Fertilization Alleviates the Effect of Salinity on Sugar Beet (Beta vulgaris L.) Productivity and Quality. Agronomy 2021, 11, 1491. [Google Scholar] [CrossRef]
- Romaneckas, K.; Adamavičienė, A.; Šarauskis, E.; Balandaitė, J. The Impact of Intercropping on Soil Fertility and Sugar Beet Productivity. Agronomy 2020, 10, 1406. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, F.; Zhang, H.; Liu, L.; Liu, X.; Chen, J.; Wang, X.; Wang, Y.; Li, C. Beneficial Effects of Biochar-Based Organic Fertilizer on Nitrogen Assimilation, Antioxidant Capacities, and Photosynthesis of Sugar Beet (Beta vulgaris L.) under Saline-Alkaline Stress. Agronomy 2020, 10, 1562. [Google Scholar] [CrossRef]
- Armin, M.; Asgharipour, M. Effect of Time and Concentration of Boron Foliar Application on Yield and Quality of Sugar Beet. Am. Euras. J. Agric. Environ. Sci. 2012, 12, 444–448. [Google Scholar]
- Barłóg, P.; Grzebisz, W. Sugar beets fertilization with potassium, sodium and magnesium—Yielding and diagnostic evaluation Part II. Quality of roots and yield of sugar. Biul. IHAR 2004, 234, 83–92. [Google Scholar]
- Benvenuti, A.; Miele, S. The effect of potash fertilizer on sugar beet yield: Comparison of solid and fluid fertilizer. In Fertilizer Use and Production of Carbohydrates and Lipids, Proceedings of the 13th Colloquium of the International Potash Institute, York, UK, 14–17 June 1977; International Potash Institute: Bern, Switzerland, 1977; pp. 221–226. [Google Scholar]
- Köchl, A. The effects of nitrogen and potassium nutrition on yield and quality of sugar beet. In Fertilizer Use and Production of Carbohydrates and Lipids, Proceedings of the 13th Colloquium of the International Potash Institute, York, UK, 14–17 June 1977; International Potash Institute: Bern, Switzerland, 1977; pp. 209–220. [Google Scholar]
- Mehrandish, M.; Jami Moeini, M.; Armin, M. Sugar beet (Beta vulgaris L.) response to potassium application under full and deficit irrigation. Euro. J. Exp. Bio. 2012, 2, 2113–2119. [Google Scholar]
- Neseim, M.R.; Amin, A.Y.; El-Mohammady, M.M.S. Effect of potassium applied with foliar spray of yeast on sugar beet growth and yield under drought stress. Glob. Adv. Res. J. Agricul. Sci. 2014, 3, 211–222. Available online: http://garj.org/garjas/index.htm (accessed on 10 October 2022).
- Nemeata Alla, H.E.A.; Sasy, A.H.; Helmy, S.A.M. Effect of Potassium Humate and Nitrogen Fertilization on Yield and Quality of Sugar Beet in Sandy Soi. J. Plant Prod. Mansoura Univ. 2018, 9, 333–338. [Google Scholar] [CrossRef]
- Wakeel, A.; Steffens, D.; Schubert, S. Potassium substitution by sodium in sugar beet (Beta vulgaris) nutrition on K-fixing soils. J. Plant Nutr. Soil Sci. 2010, 173, 127–134. [Google Scholar] [CrossRef]
- Michalska-Klimczak, B.; Wyszyński, Z. Sugar beet yielding in various agronomical and environmental conditions. Part 1. Yield and root quality vs. technological sugar yield. Fragm. Agron. 2010, 27, 88–97. [Google Scholar]
- Alami, L.; Terouzi, W.; Otmani, M.; Abdelkhalek, O.; Salmaoui, S.; Mbarki, M. Effect of sugar beet harvest date on its technological quality parameters by exploratory analysis. J. Food Qual. 2021, 2021, 6639612. [Google Scholar] [CrossRef]
- Wolf, P.F.J.; Verreet, J.A. An integrated pest management system in Germany for the control of fungal leaf diseases in sugar beet. Plant Dis. 2002, 86, 336–344. [Google Scholar] [CrossRef]
- Dewar, A.M.; Qi, A. The Virus Yellows Epidemic in Sugar Beet in the UK in 2020 and the Adverse Effect of the EU Ban on Neonicotinoids on Sugar Beet Production. Outlooks Pest Manag. 2021, 32, 53–59. [Google Scholar] [CrossRef]
- Hanse, B.; Schneider, J.H.M.; Termorshuizen, A.J.; Varrelmann, M. Pests and diseases contribute to sugar beet yield difference between top and averagely managed farms. Crop Prot. 2011, 30, 671–678. [Google Scholar] [CrossRef]
- Gummert, A.; Ladewig, E.; Bürcky, K.; Marlander, B. Variety resistance to Cercospora leaf spot and fungicide application as tools of integrated pest management in sugar beet cultivation e a German case study. Crop Prot. 2015, 72, 172–184. [Google Scholar] [CrossRef]
- Hajyieva, H.; Soroka, S. Phytosanitary situation in sugar beet crops in Belarus. Zemdirb. Agric. 2008, 95, 65–73. [Google Scholar]
- Cooke, D. Nematode parasites of sugarbeet. In Plant Parasitic Nematodes in Temmerate Agriculturae; Evans, K., Trudgill, D.L., Webster, J.M., Eds.; CABI: Wallingford, UK, 1993; pp. 133–169. 648p. [Google Scholar]
- Dobosz, R.; Kornobis, S. Population dynamics of sugar-beet cyst nematode (Heterodera schachtii) on spring and winter oilseed rape crops. J. Plant Prot. Res. 2008, 48, 237–245. [Google Scholar] [CrossRef]
- Storelli, A.; Minder, A.; Keiser, A.; Kiewnick, S.; Daub, M.; Mahlein, A.K.; Schumann, M.; Beyer, W. Screening of sugar beet pre breeding populations and breeding lines for resistance to Ditylenchus dipsaci penetration and reproduction. J. Plant Dis. Prot. 2021, 128, 1303–1311. [Google Scholar] [CrossRef]
- Čamprag, D. Štetočine šećerne repe u Jugoslaviji, Madārskoj, Rumuniji i Bugarskoj sa posebnim osvrtom na važnije štetne vrste. Forum Novi Sad 1973, 363, 343–352. [Google Scholar]
- Jakubowska, M.; Cyplik, A.; Bocianowski, J.; Wielkopolan, B. Effect of selected chemical features on the technological value of sugar beet yield after application of treatments on soil pests Wpływ wybranych cech chemicznych na wartość technologiczną plonu buraka cukrowego po zastosowaniu zabiegów na szkodniki glebowe. Progress Plant Prot. 2020, 60, 275–282. [Google Scholar] [CrossRef]
- Jakubowska, M.; Bocianowski, J.; Nowosad, K.; Kowalska, J. Decision Support System to Improve the Effectiveness of Chemical Control Against Cutworms in Sugar Beet. Sugar Tech. 2020, 22, 911–922. [Google Scholar] [CrossRef] [Green Version]
- Cooke, D.A.; Scott, J.E. The Sugar Beet Crop Technology and Engineering, 456; Chapman & Hall: London, UK, 1995. [Google Scholar] [CrossRef]
- Draycott, D.P. Sugar Beet; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2006; pp. 1–465. ISBN 101-4051-1911-x. [Google Scholar]
- Bažok, R.; Drmić, Z.; Čačija, M.; Mrganić, M.; Virić Gašparić, H.; Lemić, D. Moths of Economic Importance in the Maize and Sugar Beet Production. In Moths. Pests of Potato, Maize and Sugar Beet; Perveen, F.K., Ed.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Legrand, G.; Wauters, A.; Muchembled, C.; Richard-Molard, M. The common yellow spidermite (Tetranychus urticae Koch) (Acari: Tetranychidae) in sugar beet in Europe: A new problem. In Proceedings of the 63. IIRB Congress, Interlaken, Switzerland, 9–10 February 2000; Volume 63, pp. 245–256. [Google Scholar]
- Jakubowska, M.; Fiedler, Ż. Plantacje buraków zagrożone przez przędziorki. Ważny jest monitoring. [Beet plantations endangered by mites]. Porad. Plantatora Buraka Cukrowego 2014, 2, 53–54. [Google Scholar]
- Ulatowska, A.; Górski, D.; Piszczek, J. Monitoring of the two-spotted spider mite (Tetranychus urticae Koch) occurrence on sugar beet crops in kuyavian-pomeranian voivodeship. Zagadnienia Doradz. Rol. 2015, 4, 125–132. [Google Scholar]
- Jakubowska, M.; Fiedler, Ż.; Bocianowski, J.; Torzyński, K. The effect of spider mites (Acari: Tetranychidae) occurrence on sugar beet yield depending on the variety. Agron. Sci. 2018, 73, 41–50. [Google Scholar] [CrossRef]
- Hassan, I.; Mostafa, S. Influence of sugar beet nitrogen content on quality and efficiency of sugar extraction. J. Food Dairy Sci. 2018, 9, 111–116. [Google Scholar] [CrossRef] [Green Version]
- ICUMSA. International Commission for Uniform Methods of Sugar Analysis. 1994. Available online: http://www.icumsa.org (accessed on 20 December 2020).
- Burba, M.; Georgi, B. Die fluorometrische Bestimmung der Aminosaüren in Zuckerrüben und Zuckerfabriksprodukten mit Fluoreszamin und o-Phtalaldehyd. Zuckerindustrie 1976, 26, 322–328. [Google Scholar]
- Buchholz, K.; Märländer, B.; Puke, H.; Glattkowski, H.; Thielecke, H. Neubewertung des technischen Wertes von Zuckerrüben. Zuckerindustre 1995, 120, 113–121. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Seidler-Łożykowska, K.; Bocianowski, J. Evaluation of variability of morphological traits of selected caraway (Carum carvi L.) genotypes. Ind. Crops Prod. 2012, 35, 140–145. [Google Scholar] [CrossRef]
- Mahalanobis, P.C. On the generalized distance in statistics. Proc. Natl. Inst. Sci. India 1936, 12, 49–55. [Google Scholar]
- Artyszak, A.; Gozdowski, D.; Siuda, A. Effect of the application date of fertilizer containing silicon and potassium on the yield and technological quality of sugar beet roots. Plants 2021, 10, 370. [Google Scholar] [CrossRef] [PubMed]
- Artyszak, A. Agronomic and Habitat Conditions for Sugar Beet Yielding and Health; Treatises and Monographs, 398; Warsaw University of Life Sciences Press: Warsaw, Poland, 2012; p. 154. [Google Scholar]
- Sato, M.E.; Da Silva, M.Z.; Raga, A.; Filho, M.F.D.S. Abamectin resistance in Tetranychus urticae Koch (Acari: Tetranychidae): Selection, cross-resistance and stability of resistance. Neotrop. Entomol. 2005, 34, 991–998. [Google Scholar] [CrossRef] [Green Version]
- Nicastro, R.L.; Sato, M.E.; Da Silva, M.Z. Milbemectin resistance in Tetranychus urticae (Acari: Tetranychidae): Selection, stability and cross-resistance to abamectin. Exp. Appl. Acarol. 2010, 50, 231–241. [Google Scholar] [CrossRef]
- El-Sayed, S.M.; Ahmed, N.; Selim, S.; Al-Khalaf, A.A.; El Nahhas, N.; Abdel-Hafez, S.H.; Sayed, S.; Emam, H.M.; Ibrahim, M.A.R. Acaricidal and antioxidant activities of anise oil (Pimpinella anisum) and the oil’s effect on protease and acetylcholinesterase in the two-spotted spider mite (Tetranychus urticae Koch). Agriculture 2022, 12, 224. [Google Scholar] [CrossRef]
- Jakubowska, M.; Dobosz, R.; Zawada, D.; Kowalska, J. A Review of Crop Protection Methods against the Twospotted Spider Mite—Tetranychus urticae Koch (Acari: Tetranychidae)—With Special Reference to Alternative Methods. Agriculture 2022, 12, 898. [Google Scholar] [CrossRef]
- Hayes, W.J.; Laws, E.R. Hand Book of Pesticide Toxicology; Academic Press: San Diego, CA, USA, 1991; Volume 1. [Google Scholar]
- Al-Jboory, I.J.; Jumida, R.E.; Al-Sammarie, A.I. Cross resistance of bromopropylate in the two spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae). Univ. Aden J. Nat. Appl. Sci. 2004, 8, 411–416. [Google Scholar]
- Bylemans, D.; Meurrens, F. Anti-resistance strategies for two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae) in strawberry culture. Acta Hortic. 1997, 439, 869–873. [Google Scholar] [CrossRef]
- Malnou, C.S.; Jaggard, K.W.; Sparkes, D.L. A canopy approach to nitrogen fertilizer recommendations for the sugar beet crop. Eur. J. Agron. 2006, 25, 254–263. [Google Scholar] [CrossRef]
Insecticide/Acaricide | Variant | Active Ingredients | Criterium for Application | Mite Stage | Dose |
---|---|---|---|---|---|
Envidor 240 SC | (E) | Spirodiclofen—240 g—22.11% | feeding symptoms | moving stages and eggs | 0.4 l ha−1 |
Nissorun Strong 250 EC + Ortus 05 SC | (NO) | Heksytiazoks—250 g—23.15% | feeding symptoms | egg stage | 0.4 l ha−1 |
Fenpiroksymat—51.2 g—5.02% | moving stages | 1.5 l ha−1 | |||
Ortus 05 SC | (O) | Fenpiroksymat—51.2 g—5.02% | feeding symptoms | moving stages | 1.5 l ha−1 |
Treol 770 EC | (T) | paraffin oil—770 g L−1 (89.6%) acaricide | feeding symptoms | moving stages | 1.5 l/100 l ha−1 |
Vertigo 018 EC | (V) | Abamectine—18 g—1.88%) | feeding symptoms | moving stages | 0.75 l ha−1 |
Control | C | Pesticide free |
Source of Variation | Year | Plant Protection Product | Year × Plant Protection Product Interaction |
---|---|---|---|
The number of degrees of freedom | 2 | 5 | 10 |
Plant density, PD | 43.47 *** | 1.87 | 2.52 * |
Sugar beet yield, SBY | 13.39 *** | 4.04 ** | 1.22 |
Biological sugar yield, BSY | 32.5 *** | 3.12 * | 1.16 |
Pure sugar yield, PSY | 37.27 *** | 3.14 * | 1.21 |
Sugar content, SC | 338.64 *** | 1.95 | 1.3 |
Refined of sugar content, RSC | 349.71 *** | 1.91 | 1.85 |
The yield of preferential sugar, YPS | 77.79 *** | 0.86 | 1.63 |
Recoverable sugar, RS | 5.57 ** | 0.47 | 0.9 |
Potassium molasses, PM | 5.15 ** | 0.77 | 0.59 |
Sodium molasses, SM | 85.36 *** | 3.17 * | 1.77 |
α-amino nitrogen, α-AN | 2.68 | 0.49 | 0.64 |
Alkalinity factor, AF | 0.42 | 0.28 | 0.2 |
Standard molasses losses, SML | 6.37 ** | 0.67 | 0.81 |
Trait | PD | SBY | BSY | PSY | SC | RSC | YPS | RS | PM | SM | α-AN | AF |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SBY | −0.02 | |||||||||||
BSY | 0.38 ** | 0.83 *** | ||||||||||
PSY | 0.42 *** | 0.78 *** | 0.99 *** | |||||||||
SC | 0.65 *** | −0.03 | 0.53 *** | 0.59 *** | ||||||||
RSC | 0.65 *** | −0.05 | 0.51 *** | 0.59 *** | 1.00 *** | |||||||
YPS | 0.56 *** | −0.13 | 0.35 * | 0.44 *** | 0.82 *** | 0.87 *** | ||||||
RS | −0.11 | 0.15 | 0.06 | 0.01 | −0.1 | −0.2 | −0.65 *** | |||||
PM | 0.07 | 0.18 | 0.21 | 0.17 | 0.13 | 0.05 | −0.32 ** | 0.75 *** | ||||
SM | −0.36 ** | 0.40 *** | 0.06 | 0 | −0.52 *** | −0.55 *** | −0.63 *** | 0.38 ** | 0.2 | |||
α-AN | −0.13 | 0.05 | −0.01 | −0.06 | −0.1 | −0.18 | −0.61 *** | 0.91 *** | 0.46 *** | 0.30 * | ||
AF | 0.09 | 0.13 | 0.13 | 0.13 | 0.02 | 0.06 | 0.23 | −0.34 ** | 0.26 * | 0.08 | −0.67 *** | |
SML | −0.1 | 0.15 | 0.09 | 0.03 | −0.07 | −0.17 | −0.62 *** | 0.98 *** | 0.76 *** | 0.40 *** | 0.92 *** | −0.35 ** |
Year | 2019 | 2020 | 2021 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Plant Protection Product | NO | C | V | E | O | T | NO | C | V | E | O | T | NO | C | V | E | O | |
2019 | C | 1.43 | ||||||||||||||||
V | 2.62 | 3.20 | ||||||||||||||||
E | 1.67 | 1.31 | 3.41 | |||||||||||||||
O | 1.79 | 1.26 | 3.13 | 1.99 | ||||||||||||||
T | 2.42 | 3.45 | 2.93 | 3.76 | 3.28 | |||||||||||||
2020 | NO | 5.55 | 5.74 | 4.24 | 5.68 | 6.23 | 5.77 | |||||||||||
C | 8.88 | 8.77 | 7.60 | 8.68 | 9.01 | 9.25 | 5.24 | |||||||||||
V | 9.41 | 9.43 | 8.00 | 9.22 | 9.70 | 9.79 | 5.02 | 2.70 | ||||||||||
E | 6.66 | 6.85 | 5.37 | 6.77 | 7.12 | 6.24 | 2.56 | 4.80 | 5.16 | |||||||||
O | 7.83 | 7.89 | 6.65 | 7.82 | 8.22 | 7.71 | 3.61 | 3.57 | 4.04 | 2.44 | ||||||||
T | 8.36 | 8.53 | 6.81 | 8.35 | 8.77 | 8.16 | 3.50 | 3.79 | 3.05 | 2.63 | 2.46 | |||||||
2021 | NO | 4.23 | 5.40 | 4.71 | 5.14 | 5.16 | 4.43 | 7.49 | 10.89 | 10.88 | 8.65 | 9.75 | 9.90 | |||||
C | 3.90 | 4.87 | 4.60 | 4.75 | 4.45 | 4.36 | 7.81 | 11.15 | 11.23 | 8.98 | 10.05 | 10.30 | 1.68 | |||||
V | 6.53 | 7.05 | 7.17 | 7.16 | 6.58 | 6.93 | 9.77 | 13.02 | 13.08 | 10.84 | 11.73 | 12.19 | 4.33 | 3.97 | ||||
E | 3.97 | 4.94 | 4.27 | 5.09 | 4.65 | 4.07 | 7.50 | 10.91 | 11.14 | 8.66 | 9.77 | 10.09 | 2.91 | 2.35 | 5.28 | |||
O | 3.80 | 5.04 | 3.90 | 4.91 | 4.63 | 3.51 | 7.09 | 10.41 | 10.53 | 8.05 | 9.27 | 9.38 | 1.60 | 1.76 | 5.07 | 2.52 | ||
T | 3.85 | 4.64 | 3.64 | 4.92 | 4.03 | 4.03 | 6.91 | 10.08 | 10.28 | 8.01 | 9.10 | 9.33 | 2.92 | 2.23 | 4.17 | 2.78 | 2.33 | |
Dα = 9.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bocianowski, J.; Jakubowska, M.; Zawada, D.; Dobosz, R. The Effect of Acaricide Control of the Two-Spotted Spider Mite Tetranychus urticae Koch on the Cultivation of Sugar Beet (Beta vulgaris L.) and on the Size and Quality of the Yield. Appl. Sci. 2022, 12, 12139. https://doi.org/10.3390/app122312139
Bocianowski J, Jakubowska M, Zawada D, Dobosz R. The Effect of Acaricide Control of the Two-Spotted Spider Mite Tetranychus urticae Koch on the Cultivation of Sugar Beet (Beta vulgaris L.) and on the Size and Quality of the Yield. Applied Sciences. 2022; 12(23):12139. https://doi.org/10.3390/app122312139
Chicago/Turabian StyleBocianowski, Jan, Magdalena Jakubowska, Daniel Zawada, and Renata Dobosz. 2022. "The Effect of Acaricide Control of the Two-Spotted Spider Mite Tetranychus urticae Koch on the Cultivation of Sugar Beet (Beta vulgaris L.) and on the Size and Quality of the Yield" Applied Sciences 12, no. 23: 12139. https://doi.org/10.3390/app122312139
APA StyleBocianowski, J., Jakubowska, M., Zawada, D., & Dobosz, R. (2022). The Effect of Acaricide Control of the Two-Spotted Spider Mite Tetranychus urticae Koch on the Cultivation of Sugar Beet (Beta vulgaris L.) and on the Size and Quality of the Yield. Applied Sciences, 12(23), 12139. https://doi.org/10.3390/app122312139