Molecular Techniques and Target Selection for the Identification of Candida spp. in Oral Samples
Abstract
:1. Introduction
2. Epidemiology of Candida Infections
3. Molecular Identification of Candida spp.
3.1. Conventional PCR
3.2. Real Time-PCR
3.3. Nested PCR
3.4. Multiplex PCR
3.5. Restriction Fragment Length Polymorphism (RFLP)
3.6. Microarray
3.7. High-Resolution Melting Analysis (HRMA)
3.8. Multilocus Sequence Typing (MLST)
3.9. Loop-Mediated Isothermal Amplification (LAMP)
3.10. Next Generation Sequencing (NGS)
3.11. Peptide Nucleic Acid Fluorescence In Situ Hybridization (PNA FISH)
3.12. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS)
3.13. Promising Molecular Techniques: ddPCR
4. DNA Target Selection for the Identification of Candida spp.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baumgardner, D.J. Oral Fungal Microbiota: To Thrush and Beyond. J. Patient-Centered Res. Rev. 2019, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Harriott, M.M.; Lilly, E.A.; Rodriguez, T.E.; Fidel, P.L.; Noverr, M.C. Candida albicans Forms Biofilms on the Vaginal Mucosa. Microbiology 2010, 156, 3635–3644. [Google Scholar] [CrossRef] [PubMed]
- Koehler, P.; Stecher, M.; Cornely, O.A.; Koehler, D.; Vehreschild, M.J.G.T.; Bohlius, J.; Wisplinghoff, H.; Vehreschild, J.J. Morbidity and Mortality of Candidaemia in Europe: An Epidemiologic Meta-Analysis. Clin. Microbiol. Infect. 2019, 25, 1200–1212. [Google Scholar] [CrossRef] [PubMed]
- Lamoth, F.; Lockhart, S.R.; Berkow, E.L.; Calandra, T. Changes in the Epidemiological Landscape of Invasive Candidiasis. J. Antimicrob. Chemother. 2018, 73, i4–i13. [Google Scholar] [CrossRef]
- Yapar, N. Epidemiology and Risk Factors for Invasive Candidiasis. Ther. Clin. Risk Manag. 2014, 10, 95–105. [Google Scholar] [CrossRef]
- Alam, M.Z.; Alam, Q.; Jiman-Fatani, A.; Kamal, M.A.; Abuzenadah, A.M.; Chaudhary, A.G.; Akram, M.; Haque, A. Candida Identification: A Journey from Conventional to Molecular Methods in Medical Mycology. World J. Microbiol. Biotechnol. 2014, 30, 1437–1451. [Google Scholar] [CrossRef]
- Silva, D.B.d.S.; de Oliveira, K.M.P.; Grisolia, A.B. Molecular Methods Developed for the Identification and Characterization of Candida Species. Int. J. Genet. Sci. 2017, 4, 1–6. [Google Scholar] [CrossRef]
- Małek, M.; Paluchowska, P.; Bogusz, B.; Budak, A. Molecular Characterization of Candida Isolates from Intensive Care Unit Patients, Krakow, Poland. Rev. Iberoam. Micol. 2017, 34, 10–16. [Google Scholar] [CrossRef]
- Hamzeh, S.; Kalantar-Neyestanaki, D.; Ali Mohammadi, M.; Nasibi, S.; Ayatollahi Mousavi, S.A. Identification of Candida spp. Isolated from Oral Mucosa in Patients with Leukemias and Lymphomas in Iran. Iran. J. Microbiol. 2019, 11, 114–119. [Google Scholar] [CrossRef]
- Butera, A.; Pascadopoli, M.; Pellegrini, M.; Gallo, S.; Zampetti, P.; Scribante, A. Oral Microbiota in Patients with Peri-Implant Disease: A Narrative Review. Appl. Sci. 2022, 12, 3250. [Google Scholar] [CrossRef]
- Slazhneva, E.; Orekhova, L.; Tikhomirova, E.; Tsarev, V.; Loboda, E.; Atrushkevich, V. Candida Species Detection in Patients with Chronic Periodontitis: A Systematic Review and Meta-Analysis Review Questions. Clin. Exp. Dent. Res. 2022, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Henriques, M.; Azeredo, J.; Oliveira, R. Candida Species Adhesion to Oral Epithelium: Factors Involved and Experimental Methodology Used. Crit. Rev. Microbiol. 2006, 32, 217–226. [Google Scholar] [CrossRef] [PubMed]
- McCarty, T.P.; White, C.M.; Pappas, P.G. Candidemia and Invasive Candidiasis. Infect. Dis. Clin. North Am. 2021, 35, 389–413. [Google Scholar] [CrossRef] [PubMed]
- Hirano, R.; Sakamoto, Y.; Kudo, K.; Ohnishi, M. Retrospective Analysis of Mortality and Candida Isolates of 75 Patients with Candidemia: A Single Hospital Experience. Infect. Drug Resist. 2015, 8, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Spivak, E.S.; Hanson, K.E. Candida auris: An Emerging Fungal Pathogen. J. Clin. Microbiol. 2018, 56, 1–10. [Google Scholar] [CrossRef]
- Hasan, F.; Xess, I.; Wang, X.; Jain, N.; Fries, B.C. Biofilm Formation in Clinical Candida Isolates and Its Association with Virulence. Microbes Infect. 2009, 11, 753–761. [Google Scholar] [CrossRef]
- Lopes, J.P.; Lionakis, M.S. Pathogenesis and Virulence of Candida albicans. Virulence 2022, 13, 89–121. [Google Scholar] [CrossRef]
- Sardi, J.C.O.; Scorzoni, L.; Bernardi, T.; Fusco-Almeida, A.M.; Mendes Giannini, M.J.S. Candida Species: Current Epidemiology, Pathogenicity, Biofilm Formation, Natural Antifungal Products and New Therapeutic Options. J. Med. Microbiol. 2013, 62, 10–24. [Google Scholar] [CrossRef]
- Ho, J.; Camilli, G.; Griffiths, J.S.; Richardson, J.P.; Kichik, N.; Naglik, J.R. Candidaalbicans and Candidalysin in Inflammatory Disorders and Cancer. Immunology 2021, 162, 11–16. [Google Scholar] [CrossRef]
- Jenks, J.D.; Cornely, O.A.; Chen, S.C.A.; Thompson, G.R.; Hoenigl, M. Breakthrough Invasive Fungal Infections: Who Is at Risk? Mycoses 2020, 63, 1021–1032. [Google Scholar] [CrossRef]
- Zakaria, M.N.; Furuta, M.; Takeshita, T.; Shibata, Y.; Sundari, R.; Eshima, N.; Ninomiya, T.; Yamashita, Y. Oral Mycobiome in Community-Dwelling Elderly and Its Relation to Oral and General Health Conditions. Oral Dis. 2017, 23, 973–982. [Google Scholar] [CrossRef] [PubMed]
- Mathur, P.; Hasan, F.; Singh, P.K.; Malhotra, R.; Walia, K.; Chowdhary, A. Five-Year Profile of Candidaemia at an Indian Trauma Centre: High Rates of Candida auris Blood Stream Infections. Mycoses 2018, 61, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Ricotta, E.; Lai, Y.L.; Sameer, K.S.; Lionakis, M.; Prevots, R.; Adjemian, J. Species Distribution and Trends of Invasive Candidiasis in the United States. Abstr. • OFID 2018, 362, 2016–2017. [Google Scholar]
- Cleveland, A.A.; Harrison, L.H.; Farley, M.M.; Hollick, R.; Stein, B.; Chiller, T.M.; Lockhart, S.R.; Park, B.J. Declining Incidence of Candidemia and the Shifting Epidemiology of Candida Resistance in Two US Metropolitan Areas, 2008-2013: Results from Population-Based Surveillance. PLoS One 2015, 10, 2008–2013. [Google Scholar] [CrossRef]
- Campion, E.W.; Kullberg, B.J.; Arendrup, M.C. Invasive Candidiasis. N. Engl. J. Med. 2015, 373, 1445–1456. [Google Scholar] [CrossRef]
- Alexander, B.D.; Pfaller, M.A. Contemporary Tools for the Diagnosis and Management of Invasive Mycoses. Clin. Infect. Dis. 2006, 43 (Supplement article), S15–S27. [Google Scholar] [CrossRef]
- Garey, K.W.; Rege, M.; Pai, M.P.; Mingo, D.E.; Suda, K.J.; Turpin, R.S.; Bearden, D.T. Time to Initiation of Fluconazole Therapy Impacts Mortality in Patients with Candidemia: A Multi-Institutional Study. Clin. Infect. Dis. 2006, 43, 25–31. [Google Scholar] [CrossRef]
- Parkins, M.D.; Sabuda, D.M.; Elsayed, S.; Laupland, K.B. Adequacy of Empirical Antifungal Therapy and Effect on Outcome among Patients with Invasive Candida Species Infections. J. Antimicrob. Chemother. 2007, 60, 613–618. [Google Scholar] [CrossRef]
- Clancy, C.J.; Nguyen, M.H. Diagnosing Invasive Candidiasis. J. Clin. Microbiol. 2018, 56. [Google Scholar] [CrossRef]
- Dadar, M.; Tiwari, R.; Karthik, K.; Chakraborty, S.; Shahali, Y.; Dhama, K. Candidaalbicans - Biology, Molecular Characterization, Pathogenicity, and Advances in Diagnosis and Control – An Update. Microb. Pathog. 2018, 117, 128–138. [Google Scholar] [CrossRef]
- Lewis, M.A.O.; Williams, D.W. Diagnosis and Management of Oral Candidosis. Br. Dent. J. 2017, 223, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Castanheira, M. Nosocomial Candidiasis: Antifungal Stewardship and the Importance of Rapid Diagnosis. Med. Mycol. 2016, 54, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Buzalaf, M.A.R.; Ortiz, A.d.C.; Carvalho, T.S.; Fideles, S.O.M.; Araújo, T.T.; Moraes, S.M.; Buzalaf, N.R.; Reis, F.N. Saliva as a Diagnostic Tool for Dental Caries, Periodontal Disease and Cancer: Is There a Need for More Biomarkers? Expert Rev. Mol. Diagn. 2020, 20, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Khurshid, Z.; Zafar, M.S.; Khan, R.S.; Najeeb, S.; Slowey, P.D.; Rehman, I.U. Role of Salivary Biomarkers in Oral Cancer Detection; Elsevier Ltd.: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Fernandes, L.L.; Pacheco, V.B.; Borges, L.; Athwal, H.K.; de Paula Eduardo, F.; Bezinelli, L.; Correa, L.; Jimenez, M.; Dame-Teixeira, N.; Lombaert, I.M.A.; et al. Saliva in the Diagnosis of COVID-19: A Review and New Research Directions. J. Dent. Res. 2020, 99, 1435–1443. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Cadena, K.; Marcos-Arias, C.; Mateo, E.; Aguirre, J.M.; Quindós, G.; Eraso, E. Prevalence and Antifungal Susceptibility Profiles of Candida glabrata, Candida parapsilosis and Their Close-Related Species in Oral Candidiasis. Arch. Oral Biol. 2018, 95, 100–107. [Google Scholar] [CrossRef]
- d’Enfert, C. Biofilms and Their Role in the Resistance of Pathogenic Candida to Antifungal Agents. Curr. Drug Targets 2006, 7, 465–670. [Google Scholar] [CrossRef] [PubMed]
- Gold, J.A.W.; Seagle, E.E.; Nadle, J.; Barter, D.M.; Czaja, C.A.; Johnston, H.; Farley, M.M.; Thomas, S.; Harrison, L.H.; Fischer, J.; et al. Treatment Practices for Adults with Candidemia at 9 Active Surveillance Sites-United States, 2017–2018. Clin. Infect. Dis. 2021, 73, 1609–1616. [Google Scholar] [CrossRef]
- Robbins, N.; Uppuluri, P.; Nett, J.; Rajendran, R.; Ramage, G.; Lopez-Ribot, J.L.; Andes, D.; Cowen, L.E. Hsp90 Governs Dispersion and Drug Resistance of Fungal Biofilms. PLoS Pathog. 2011, 7, e1002257. [Google Scholar] [CrossRef]
- Zarrinfar, H.; Kord, Z.; Fata, A. High Incidence of Azole Resistance among Candida albicans and C. glabrata Isolates in Northeastern Iran. Curr. Med. Mycol. 2021, 17, 18–21. [Google Scholar] [CrossRef]
- Ajenjo, M.C.; Aquevedo, A.; Guzmán, A.M.; Poggi, H.; Calvo, M.; Castillo, C.; León, E.; Andresen, M.; Labarca, J. Perfil Epidemiológico de La Candidiasis Invasora En Unidades de Pacientes Críticos En Un Hospital Universitario. Rev. Chill. Infecttiologia 2011, 28, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Cernáková, L.; Anna, L.; Lengyelová, L.; ROdrigues, C.F. Prevalence and Antifungal Susceptibility Profile of Oral Candida spp. Isolates from a Hospital in Slovakia. Medicina (B. Aires) 2022, 58, 576. [Google Scholar] [CrossRef] [PubMed]
- Jeffery-Smith, A.; Taori, S.K.; Schelenz, S.; Jeffery, K.; Johnson, E.M.; Borman, A.; Manuel, R.; Browna, C.S. Candida auris: A Review of the Literature. Clin. Microbiol. Rev. 2018, 31, 1–18. [Google Scholar] [CrossRef]
- Terças, A.L.G.; Marques, S.G.; Moffa, E.B.; Alves, M.B.; de Azevedo, C.M.P.S.; Siqueira, W.L.; Monteiro, C.A. Antifungal Drug Susceptibility of Candida Species Isolated from HIV-Positive Patients Recruited at a Public Hospital in São Luís, Maranhão, Brazil. Front. Microbiol. 2017, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Willinger, B. What Is the Target? Clinical Mycology and Diagnostics. In Clinically Relevant Mycoses; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Alnuaimi, A.D.; Wiesenfeld, D.; O’Brien-Simpson, N.M.; Reynolds, E.C.; Peng, B.; Mccullough, M.J. The Development and Validation of a Rapid Genetic Method for Species Identification and Genotyping of Medically Important Fungal Pathogens Using High-Resolution Melting Curve Analysis. Mol. Oral Microbiol. 2014, 29, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Dunyach, C.; Bertout, S.; Phelipeau, C.; Drakulovski, P.; Reynes, J.; Mallié, M. Detection and Identification of Candida spp. in Human Serum by LightCycler® Real-Time Polymerase Chain Reaction. Diagn. Microbiol. Infect. Dis. 2008, 60, 263–271. [Google Scholar] [CrossRef]
- Fricke, S.; Fricke, C.; Schimmelpfennig, C.; Oelkrug, C.; Schönfelder, U.; Blatz, R.; Zilch, C.; Faber, S.; Hilger, N.; Ruhnke, M.; et al. A Real-Time PCR Assay for the Differentiation of Candida Species. J. Appl. Microbiol. 2010, 109, 1150–1158. [Google Scholar] [CrossRef] [PubMed]
- Guiver, M.; Levi, K.; Oppenheim, B.A. Rapid Identification of Candida Species by TaqMan PCR. J. Clin. Pathol. 2001, 54, 362–366. [Google Scholar] [CrossRef]
- Neppelenbroek, K.H.; Seó, R.S.; Urban, V.M.; Silva, S.; Dovigo, L.N.; Jorge, J.H.; Campanha, N.H. Identification of Candida Species in the Clinical Laboratory: A Review of Conventional, Commercial, and Molecular Techniques. Oral Dis. 2014, 20, 329–344. [Google Scholar] [CrossRef]
- Deorukhkar, S.C.; Saini, S. Laboratory Approach for Diagnosis of Candidiasis through Ages. Int. J. Curr. Microbiol.App. Sci 2014, 3, 206–218. [Google Scholar]
- Gharizadeh, B.; Norberg, E.; Löffler, J.; Jalal, S.; Tollemar, J.; Einsele, H.; Klingspor, L.; Nyrén, P. Identification of Medically Important Fungi by the PyrosequencingTM Technology. Mycoses 2004, 47, 29–33. [Google Scholar] [CrossRef]
- Leaw, S.N.; Chang, H.C.; Sun, H.F.; Barton, R.; Bouchara, J.; Chang, T.C. Identification of Medically Important Yeast Species by Sequence Analysis of the Internal Transribed Spacer Regions. J. Clin. Microbiol. 2006, 44, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Nemcova, E.; Cernochova, M.; Ruzicka, F.; Malisova, B.; Freiberger, T.; Nemec, P. Rapid Identification of Medically Important Candida Isolates Using High Resolution Melting Analysis. PLoS ONE 2015, 10, 1–15. [Google Scholar] [CrossRef]
- Williams, D.W.; Wilson, M.J.; Lewis, M.A.O.; Potts, A.J.C. Identification of Candida Species by PCR and Restriction Fragment Length Polymorphism Analysis of Intergenic Spacer Regions of Ribosomal DNA. J. Clin. Microbiol. 1995, 33, 2476–2479. [Google Scholar] [CrossRef] [PubMed]
- Arancia, S.; Sandini, S.; De Bernardis, F.; Fortini, D. Rapid, Simple, and Low-Cost Identification of Candida Species Using High-Resolution Melting Analysis. Diagn. Microbiol. Infect. Dis. 2011, 69, 283–285. [Google Scholar] [CrossRef]
- Arancia, S.; Sandini, S.; Cassone, A.; De Bernardis, F. Use of 65 KDa Mannoprotein Gene Primers in PCR Methods for the Identification of Five Medically Important Candida Species. Mol. Cell. Probes 2009, 23, 218–226. [Google Scholar] [CrossRef]
- Campa, D.; Tavanti, A.; Gemignani, F.; Mogavero, C.S.; Bellini, I.; Bottari, F.; Barale, R.; Landi, S.; Senesi, S. DNA Microarray Based on Arrayed-Primer Extension Technique for Identification of Pathogenic Fungi Responsible for Invasive and Superficial Mycoses. J. Clin. Microbiol. 2008, 46, 909–915. [Google Scholar] [CrossRef]
- Spiess, B.; Seifarth, W.; Hummel, M.; Frank, O.; Fabarius, A.; Zheng, C.; Mörz, H.; Hehlmann, R.; Buchheidt, D. DNA Microarray-Based Detection and Identification of Fungal Pathogens in Clinical Samples from Neutropenic Patients. J. Clin. Microbiol. 2007, 45, 3743–3753. [Google Scholar] [CrossRef]
- Obručová, H.; Tihelková, R.; Kotásková, I.; Růžička, F.; Holá, V.; Němcová, E.; Freiberger, T. Evaluation of Fluorescent Capillary Electrophoresis for Rapid Identification of Candida Fungal Infections. J. Clin. Microbiol. 2016, 54, 1295–1303. [Google Scholar] [CrossRef]
- Liu, D. Molecular Detection of Human Fungal Pathogen; CRC Press; Taylor & Francis Group: London, UK, 2011. [Google Scholar] [CrossRef]
- Tata, W.; Viraporn, P.; Chatsri, T.; Kuansuwan, K. Distribution of Candida Species in Oral Candidiasis Patients: Association between Sites of Isolation, Ability to Form Biofilm, and Susceptibility to Antifungal Drugs. J. Assoc. Med. Sci. 2018, 51, 32–37. [Google Scholar] [CrossRef]
- Shi, B.; Wu, T.; Mclean, J.; Edlund, A.; Young, Y. The Denture-Associated Oral Microbiome. Clininal Sci. Epidemiol. 2016, 1, 1–13. [Google Scholar] [CrossRef]
- Wolffs, P.; Grage, H.; Hagberg, O.; Rådström, P. Impact of DNA Polymerases and Their Buffer Systems on Quantitative Real-Time PCR. J. Clin. Microbiol. 2004, 42, 408–411. [Google Scholar] [CrossRef] [PubMed]
- Ginzinger, D.G. Gene Quantification Using Real-Time Quantitative PCR: An Emerging Technology Hits the Mainstream. Exp. Hematol. 2002, 30, 503–512. [Google Scholar] [CrossRef]
- Metwally, L.; Fairley, D.J.; Coyle, P.V.; Hay, R.J.; Hedderwick, S.; McCloskey, B.; O’Neill, H.J.; Webb, C.H.; Elbaz, W.; McMullan, R. Improving Molecular Detection of Candida DNA in Whole Blood: Comparison of Seven Fungal DNA Extraction Protocols Using Real-Time PCR. J. Med. Microbiol. 2008, 57, 296–303. [Google Scholar] [CrossRef] [PubMed]
- White, P.L.; Williams, D.W.; Kuriyama, T.; Samad, S.A.; Lewis, M.A.O.; Barnes, R.A. Detection of Candida in Concentrated Oral Rinse Cultures by Real-Time PCR. J. Clin. Microbiol. 2004, 42, 2101–2107. [Google Scholar] [CrossRef]
- Tomov, G.; Stamenov, N.; Neychev, D.; Atliev, K. Candida Carriers among Individuals with Tongue Piercing—A Real-Time PCR Study. Antibiotics 2022, 11, 742. [Google Scholar] [CrossRef]
- Amarasinghe, A.A.P.B.N.; Muhandiram, M.R.S.; Kodithuwakku, S.P.; Thilakumara, I.P.; Jayatilake, J.A.M.S. Identification, Genotyping and Invasive Enzyme Production of Oral Candida Species from Denture Induced Stomatitis Patients and Healthy Careers. J. Oral Maxillofac. Surgery Med. Pathol. 2021, 33, 467–474. [Google Scholar] [CrossRef]
- Zarei, N.; Roudbary, M.; Roudbar Mohammadi, S.; dos Santos, A.S.; Nikoomanesh, F.; Mohammadi, R.; Shirvan, B.; Yaalimadad, S. Prevalence, Molecular Identification, and Genotyping of Candida Species Recovered from Oral Cavity among Patients with Diabetes Mellitus from Tehran, Iran. Adv. Biomed. Res. 2022, 11, 29. [Google Scholar] [CrossRef]
- Tang, Y.-W.; Stratton, C.W. Advanced Techniques in Diagnostic Microbiology, 2nd ed.; Yi-Wei, Stratton, C.Y., Eds.; Springer: New York, NY, USA; Heidelberg Germany; Dordracht, The Netherlands; London, UK, 2017; Volume 53. [Google Scholar] [CrossRef]
- Kanbe, T.; Horii, T.; Arishima, T.; Ozeki, M.; Kikuchi, A. PCR-Based Identification of Pathogenic Candida Species Using Primer Mixes Specific to Candida DNA Topoisomerase II Genes. Yeast 2002, 19, 973–989. [Google Scholar] [CrossRef] [Green Version]
- Coronado-castellote, L.; Jiménez-soriano, Y. Clinical and Microbiological Diagnosis of Oral Candidiasis. Oral Med. Pathol. 2013, 5, 279–286. [Google Scholar] [CrossRef]
- Liguori, G.; Di Onofrio, V.; Lucariello, A.; Gallé, F.; Signoriello, G.; Colella, G.; D’Amora, M.; Rossano, F. Oral Candidiasis: A Comparison between Conventional Methods and Multiplex Polymerase Chain Reaction for Species Identification. Oral Microbiol. Immunol. 2009, 24, 76–78. [Google Scholar] [CrossRef]
- Luo, G.; Mitchell, T.G. Rapid Identification of Pathogenic Fungi Directly from Cultures by Using Multiplex PCR. J. Clin. Microbiol. 2002, 40, 2860–2865. [Google Scholar] [CrossRef]
- Romeo, O.; Scordino, F.; Pernice, I.; Lo Passo, C.; Criseo, G. A Multiplex PCR Protocol for Rapid Identification of Candida glabrata and Its Phylogenetically Related Species Candida nivariensis and Candida Bracarensis. J. Microbiol. Methods 2009, 79, 117–120. [Google Scholar] [CrossRef]
- Sampath, A.; Weerasekera, M.; Gunasekara, C.; Dilhari, A.; Bulugahapitiya, U.; Fernando, N. A Sensitive and a Rapid Multiplex Polymerase Chain Reaction for the Identification of Candida Species in Concentrated Oral Rinse Specimens in Patients with Diabetes. Acta Odontol. Scand. 2017, 75, 113–122. [Google Scholar] [CrossRef]
- Carvalho, A.; Costa-De-Oliveira, S.; Martins, M.L.; Pina-Vaz, C.; Rodrigues, A.G.; Ludovico, P.; Rodrigues, F. Multiplex PCR Identification of Eight Clinically Relevant Candida Species. Med. Mycol. 2007, 45, 619–627. [Google Scholar] [CrossRef]
- Arastehfar, A.; Fang, W.; Pan, W.; Lackner, M.; Liao, W.; Badiee, P.; Zomorodian, K.; Badali, H.; Hagen, F.; Lass-Flörl, C.; et al. YEAST PANEL Multiplex PCR for Identification of Clinically Important Yeast Species: Stepwise Diagnostic Strategy, Useful for Developing Countries. Diagn. Microbiol. Infect. Dis. 2019, 93, 112–119. [Google Scholar] [CrossRef]
- Liguori, G.; Lucariello, A.; Colella, G.; De Luca, A.; Marinelli, P. Rapid Identification of Candida Species in Oral Rinse Solutions by PCR. J. Clin. Pathol. 2007, 60, 1035–1039. [Google Scholar] [CrossRef]
- Hajia, M. Limitations of Different PCR Protocols Used in Diagnostic Laboratories: A Short Review. Mod. Med. Lab. J. 2017, 1, 1–6. [Google Scholar] [CrossRef]
- Teasdale, B.; West, A.; Taylor, H.; Klein, A. A Simple Restriction Fragment Length Polymorphism (RFLP) Assay to Discriminate Common Porphyra (Bangiophyceae, Rhodophyta) Taxa from the Northwest Atlantic. J. Appl. Phycol. 2002, 14, 293–298. [Google Scholar] [CrossRef]
- Cirak, M.Y.; Kalkanci, A.; Kustimur, S. Use of Molecular Methods in Identification of Candida Species and Evaluation of Fluconazole Resistance. Mem. Inst. Oswaldo Cruz 2003, 98, 1027–1032. [Google Scholar] [CrossRef]
- Barbedo, L.S.; Figueiredo-Carvalho, M.H.G.; de Medeiros Muniz, M.; Zancopé-Oliveira, R.M. The Identification and Differentiation of the Candida parapsilosis Complex Species by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism of the Internal Transcribed Spacer Region of the RDNA. Mem. Inst. Oswaldo Cruz 2016, 111, 267–270. [Google Scholar] [CrossRef]
- Mirhendi, H.; Bruun, B.; Schønheyder, H.C.; Christensen, J.J.; Fuursted, K.; Gahrn-hansen, B.; Johansen, H.K.; Nielsen, L.; Knudsen, J.D.; Arendrup, M.C. Molecular Screening for Candida orthopsilosis and Candida metapsilosis among Danish Candida parapsilosis Group Blood Culture Isolates: Proposal of a New RFLP Profile for Differentiation. J. Med. Microbiol. 2010, 59, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Aslani, N.; Abastabar, M.; Hedayati, M.T.; Shokohi, T.; Aghili, S.R.; Diba, K.; Hosseini, T.; Bahrami, B.; Ebrahimpour, A.; Salehi, M.; et al. Molecular Identification and Antifungal Susceptibility Testing of Candida Species Isolated from Dental Plaques. J. Mycol. Med. 2018, 28, 433–436. [Google Scholar] [CrossRef] [PubMed]
- Fatima, A.; Bashir, G.; Wani, T.; Jan, A.; Kohli, A.; Khan, M.S. Molecular Identification of Candida Species Isolated from Cases of Neonatal Candidemia Using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism in a Tertiary Care Hospital. Indian J. Pathol. Microbiol. 2017, 60, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Jafari, Z.; Motamedi, M.; Jalalizand, N.; Shokoohi, G.R.; Charsizadeh, A.; Mirhendi, H. A Comparison between CHROMagar, PCR-RFLP and PCR-FSP for Identification of Candida Species. Curr. Med. Mycol. 2017, 3, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; Li, J.W.; Shen, Z.Q.; Wang, X.W.; Jin, M. High-Throughput Identification of Clinical Pathogenic Fungi by Hybridization to an Oligonucleotide Microarray. J. Clin. Microbiol. 2006, 44, 3299–3305. [Google Scholar] [CrossRef]
- Nett, J.E.; Lepak, A.J.; Marchillo, K.; Andes, D.R. Time Course Global Gene Expression Analysis of an in vivo Candida Biofilm. J. Infect. Dis. 2009, 200, 307–313. [Google Scholar] [CrossRef]
- Leinberger, D.M.; Schumacher, U.; Autenrieth, I.B.; Bachmann, T.T. Development of a DNA Microarray for Detection and Identification of Fungal Pathogens Involved in Invasive Mycoses. J. Clin. Microbiol. 2005, 43, 4943–4953. [Google Scholar] [CrossRef]
- Kurg, A.; Tõnisson, N.; Georgiou, I.; Shumaker, J.; Tollett, J.; Metspalu, A. Arrayed Primer Extension: Solid-Phase Four-Color DNA Resequencing and Mutation Detection Technology. Genet. Test. 2000, 4, 1–7. [Google Scholar] [CrossRef]
- Volokhov, D.; Rasooly, A.; Chumakov, K.; Chizhikov, V. Identification of Listeria Species by Microarray-Based Assay. J. Clin. Microbiol. 2002, 40, 4720–4728. [Google Scholar] [CrossRef]
- Reed, G.H.; Kent, J.O.; Wittwer, C.T. High-Resolution DNA Melting Analysis for Simple and Efficient Molecular Diagnostics. Pharmacogenomics 2007, 8, 597–608. [Google Scholar] [CrossRef]
- Arastehfar, A.; Boekhout, T.; Butler, G.; Buda De Cesare, G.; Dolk, E.; Gabaldón, T.; Hafez, A.; Hube, B.; Hagen, F.; Hovhannisyan, H.; et al. Recent Trends in Molecular Diagnostics of Yeast Infections: From PCR to NGS. FEMS Microbiol. Rev. 2019, 43, 517–547. [Google Scholar] [CrossRef]
- Bougnoux, M.E.; Morand, S.; D’Enfert, C. Usefulness of Multilocus Sequence Typing for Characterization of Clinical Isolates of Candida albicans. J. Clin. Microbiol. 2002, 40, 1290–1297. [Google Scholar] [CrossRef] [PubMed]
- Odds, F.C.; Jacobsen, M.D. Multilocus Sequence Typing of Pathogenic Candida Species. Eukaryot. Cell 2008, 7, 1075–1084. [Google Scholar] [CrossRef] [PubMed]
- Choo, K.H.; Lee, H.J.; Knight, N.J.; Holmes, A.R.; Cannon, R.D. Multilocus Sequence Typing (MLST) Analysis of Candida albicans Isolates Colonizing Acrylic Dentures before and after Denture Replacement. Med. Mycol. 2017, 55, 673–679. [Google Scholar] [CrossRef]
- Odds, F.C. Molecular Phylogenetics and Epidemiology of Candida albicans. Rev. Futur. Microbiol. 2010, 67–79. [Google Scholar] [CrossRef]
- Tavanti, A.; Gow, N.A.R.; Senesi, S.; Maiden, M.C.J.; Odds, F.C. Optimization and Validation of Multilocus Sequence Typing for Candida albicans. J. Clin. Microbiol. 2003, 41, 3765–3776. [Google Scholar] [CrossRef]
- Dougue, A.N.; El-Kholy, M.A.; Giuffrè, L.; Galeano, G.; D’Aleo, F.; Kountchou, C.L.; Nangwat, C.; Paul, D.J.; Giosa, D.; Pernice, I.; et al. Multilocus Sequence Typing ( MLST ) Analysis Reveals Many Novel Genotypes and a High Level of Genetic Diversity in Candida tropicalis Isolates from Italy and Africa. Mycoses 2022, 1–12. [Google Scholar] [CrossRef]
- Domán, M.; Makrai, L.; Bányai, K. Molecular Phylogenetic Analysis of Candida krusei. Mycopathologia 2022, 0123456789. [Google Scholar] [CrossRef]
- Widjojoatmodjo, M.N.; Borst, A.; Schukkink, R.A.F.; Box, A.T.A.; Tacken, N.M.M.; Van Gemen, B.; Verhoef, J.; Top, B.; Fluit, A.C. Nucleic Acid Sequence-Based Amplification (NASBA) Detection of Medically Important Candida Species. J. Microbiol. Methods 1999, 38, 81–90. [Google Scholar] [CrossRef]
- Zhou, X.; Kong, F.; Sorrell, T.C.; Wang, H.; Duan, Y.; Chen, S.C.A. Practical Method for Detection and Identification of Candida, Aspergillus, and Scedosporium spp. by Use of Rolling-Circle Amplification. J. Clin. Microbiol. 2008, 46, 2423–2427. [Google Scholar] [CrossRef]
- Richter, S.S.; Otiso, J.; Goje, O.J.; Vogel, S.; Aebly, J.; Keller, G.; van Heule, H.; Wehn, D.; Stephens, A.L.; Zanotti, S.; et al. Prospective Evaluation of Molecular Assays for Diagnosis of Vaginitis. J. Clin. Microbiol. 2020, 58, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lowe, S.B.; Gooding, J.J. Brief Review of Monitoring Methods for Loop-Mediated Isothermal Amplification (LAMP). Biosens. Bioelectron. 2014, 61, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Niessen, L. Current State and Future Perspectives of Loop-Mediated Isothermal Amplification (LAMP)-Based Diagnosis of Filamentous Fungi and Yeasts. Appl. Microbiol. Biotechnol. 2015, 99, 553–574. [Google Scholar] [CrossRef] [PubMed]
- Fallahi, S.; Babaei, M.; Rostami, A.; Mirahmadi, H.; Arab-Mazar, Z.; Sepahvand, A. Diagnosis of Candida albicans: Conventional Diagnostic Methods Compared to the Loop-Mediated Isothermal Amplification (LAMP) Assay. Arch. Microbiol. 2019, 0123456789. [Google Scholar] [CrossRef]
- Kasahara, K.; Ishikawa, H.; Sato, S.; Shimakawa, Y.; Watanabe, K. Development of Multiplex Loop-Mediated Isothermal Amplification Assays to Detect Medically Important Yeasts in Dairy Products. FEMS Microbiol. Lett. 2014, 357, 208–216. [Google Scholar] [CrossRef]
- Noguchi, H.; Nakamura, R.; Ueki, K.; Iwase, T.; Omagari, D.; Asano, M.; Shinozuka, K.; Kaneko, T.; Tonogi, M.; Ohki, H. Rapid Detection of Candida albicans in Oral Exfoliative Cytology Samples by Loop-Mediated Isothermal Amplification. J. Oral Sci. 2017, 59, 541–547. [Google Scholar] [CrossRef]
- Soroka, M.; Wasowicz, B.; Rymaszewska, A. Loop-Mediated Isothermal Amplification (Lamp): The Better Sibling of PCR? Cells 2021, 10, 1931. [Google Scholar] [CrossRef]
- Robinson, S.; Peterson, C.B.; Sahasrabhojane, P.; Ajami, N.J.; Shelburne, S.A.; Kontoyiannis, D.P.; Galloway-Peña, J.R. Observational Cohort Study of Oral Mycobiome and Interkingdom Interactions over the Course of Induction Therapy for Leukemia. mSphere 2020, 5, e00048-20. [Google Scholar] [CrossRef] [Green Version]
- Biswas, C.; Chen, S.C.A.; Halliday, C.; Martinez, E.; Rockett, R.J.; Wang, Q.; Timms, V.J.; Dhakal, R.; Sadsad, R.; Kennedy, K.J.; et al. Whole Genome Sequencing of Candida glabrata for Detection of Markers of Antifungal Drug Resistance. J. Vis. Exp. 2017, 2017, 1–13. [Google Scholar] [CrossRef]
- Garnaud, C.; Botterel, F.; Sertour, N.; Bougnoux, M.E.; Dannaoui, E.; Larrat, S.; Hennequin, C.; Guinea, J.; Cornet, M.; Maubon, D. Next-Generation Sequencing Offers New Insights into the Resistance of Candida spp. To Echinocandins and Azoles. J. Antimicrob. Chemother. 2015, 70, 2556–2565. [Google Scholar] [CrossRef]
- Colabella, C.; Pierantoni, D.C.; Corte, L.; Roscini, L.; Conti, A.; Bassetti, M.; Tascini, C.; Robert, V.; Cardinali, G. Single Strain High-Depth Ngs Reveals High Rdna (Its-Lsu) Variability in the Four Prevalent Pathogenic Species of the Genus Candida. Microorganisms 2021, 9, 302. [Google Scholar] [CrossRef] [PubMed]
- Colabella, C.; Corte, L.; Roscini, L.; Bassetti, M.; Tascini, C.; Mellor, J.C.; Meyer, W.; Robert, V.; Vu, D.; Cardinali, G. NGS Barcode Sequencing in Taxonomy and Diagnostics, an Application in “Candida” Pathogenic Yeasts with a Metagenomic Perspective. IMA Fungus 2018, 9, 91–105. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.G.; Yu, C.W.; Zhou, S.S.; Huang, Y.; Wang, C.Y. Case Report: A Candida Meningitis in an Immunocompetent Patient Detected Through the Next-Generation Sequencing. Front. Med. 2021, 8, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Imabayashi, Y.; Moriyama, M.; Takeshita, T.; Ieda, S.; Hayashida, J.N.; Tanaka, A.; Maehara, T.; Furukawa, S.; Ohta, M.; Kubota, K.; et al. Molecular Analysis of Fungal Populations in Patients with Oral Candidiasis Using Next-Generation Sequencing. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Fakruddin, M.; Chowdhury, A.; Hossain, N.; Mahajan, S.; Islam, S. Pyrosequencing-A next Generation Sequencing Technology. World Appl. Sci. J. 2013, 24, 1558–1571. [Google Scholar] [CrossRef]
- Ronaghi, M.; Karamohamed, S.; Pettersson, B.; Uhlén, M.; Nyrén, P. Real-Time DNA Sequencing Using Detection of Pyrophosphate Release. Anal. Biochem. 1996, 242, 84–89. [Google Scholar] [CrossRef]
- Boyanton, B.L.; Luna, R.A.; Fasciano, L.R.; Menne, K.G.; Versalovic, J. DNA Pyrosequencing–Based Identification of Pathogenic Candida Species by Using the Internal Transcribed Spacer 2 Region. Arch. Pathol. Lab. Med. 2008, 132, 667–674. [Google Scholar] [CrossRef]
- Ghannoum, M.A.; Jurevic, R.J.; Mukherjee, P.K.; Cui, F.; Sikaroodi, M.; Naqvi, A.; Gillevet, P.M. Characterization of the Oral Fungal Microbiome (Mycobiome) in Healthy Individuals. PLoS Pathog. 2010, 6. [Google Scholar] [CrossRef] [Green Version]
- Borman, A.M.; Linton, C.J.; Miles, S.; Johnson, E.M. Molecular Identification of Pathogenic Fungi. J. Antimicrob. Chemother. 2008, 61, 7–12. [Google Scholar] [CrossRef]
- Criseo, G.; Scordino, F.; Romeo, O. Current Methods for Identifying Clinically Important Cryptic Candida Species. J. Microbiol. Methods 2015, 111, 50–56. [Google Scholar] [CrossRef]
- Trama, J.P.; Mordechai, E.; Adelson, M.E. Detection and Identification of Candida Species Associated with Candida Vaginitis by Real-Time PCR and Pyrosequencing. Mol. Cell. Probes 2005, 19, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Quiles-Melero, I.; García-Rodríguez, J.; Gómez-López, A.; Mingorance, J. Evaluation of Matrix-Assisted Laser Desorption/Ionisation Time-of-Flight (MALDI-TOF) Mass Spectrometry for Identification of Candida parapsilosis, C. orthopsilosis and C. metapsilosis. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 67–71. [Google Scholar] [CrossRef]
- Siqueira, J.F.; Fouad, A.F.; Rôças, I.N. Pyrosequencing as a Tool for Better Understanding of Human Microbiomes. J. Oral Microbiol. 2012, 4. [Google Scholar] [CrossRef] [PubMed]
- Chew, K.L.; Octavia, S.; Jureen, R.; Lin, R.T.P.; Teo, J.W.P. Targeted Amplification and MinION Nanopore Sequencing of Key Azole and Echinocandin Resistance Determinants of Clinically Relevant Candida spp. from Blood Culture Bottles. Lett. Appl. Microbiol. 2021, 73, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Gale, A.N.; Bailey, A.; Barnes, K.; Colotti, K.; Mass, M.; Morina, L.B.; Robertson, B.; Schwab, R.; Tselepidakis, N.; et al. Genome and Transcriptome of a Pathogenic Yeast, Candida nivariensis. G3 Genes Genomes Genet. 2021, 11, jkab137. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, G.S.; Kline, B.C.; Stockman, L.; Roberts, G.D. Molecular Probes for Diagnosis of Fungal Infections. J. Clin. Microbiol. 1995, 33, 2913–2919. [Google Scholar] [CrossRef] [PubMed]
- Egholm, M.; Buchardt, O.; Christensen, L.; Behrens, C.; Freier, S.M.; Driver, D.A.; Berg, R.H.; Kim, S.K.; Norden, B.; Nielsen, P.E. PNA Hybridizes to Complementary Oligonucleotides Obeying the Watson-Crick Hydrogen-Bonding Rules. Nature 1993, 365, 566–568. [Google Scholar] [CrossRef]
- Stender, H.; Fiandaca, M.; Hyldig-Nielsen, J.J.; Coull, J. PNA for Rapid Microbiology. J. Microbiol. Methods 2002, 48, 1–17. [Google Scholar] [CrossRef]
- Rigby, S.; Procop, G.W.; Haase, G.; Wilson, D.; Hall, G.; Kurtzman, C.; Oliveira, K.; Von Oy, S.; Hyldig-Nielsen, J.J.; Coull, J.; et al. Fluorescence in Situ Hybridization with Peptide Nucleic Acid Probes for Rapid Identification of Candida albicans Directly from Blood Culture Bottles. J. Clin. Microbiol. 2002, 40, 2182–2186. [Google Scholar] [CrossRef]
- Harris, D.M.; Hata, D.J. Rapid Identification of Bacteria and Candida Using Pna-Fish from Blood and Peritoneal Fluid Cultures: A Retrospective Clinical Study. Ann. Clin. Microbiol. Antimicrob. 2013, 12, 1. [Google Scholar] [CrossRef]
- Lau, A.; Chen, S.; Sleiman, S.; Sorrell, T. Current Status and Future Perspectives on Molecular and Serological Methods in Diagnostic Mycology. Future Microbiol. 2009, 4, 1185–1222. [Google Scholar] [CrossRef] [PubMed]
- Shepard, J.R.; Addison, R.M.; Alexander, B.D.; Della-Latta, P.; Gherna, M.; Haase, G.; Hall, G.; Johnson, J.K.; Merz, W.G.; Peltroche-Llacsahuanga, H.; et al. Multicenter Evaluation of the Candida albicans/Candida glabrata Peptide Nucleic Acid Fluorescent in situ Hybridization Method for Simultaneous Dual-Color Identification of C. albicans and C. glabrata Directly from Blood Culture Bottles. J. Clin. Microbiol. 2008, 46, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez-Martínez, E.; Ruiz-Gaitán, A.; Pemán-García, J. Update on the Diagnosis of Invasive Fungal Infection. Rev. Españhola Quimioter. 2017, 30, 16–21. [Google Scholar] [CrossRef]
- Reller, M.E.; Mallonee, A.B.; Kwiatkowski, N.P.; Merz, W.G. Use of Peptide Nucleic Acid-Fluorescence in Situ Hybridization for Definitive, Rapid Identification of Five Common Candida Species. J. Clin. Microbiol. 2007, 45, 3802–3803. [Google Scholar] [CrossRef] [PubMed]
- Alexander, B.D.; Ashley, E.D.; Reller, L.B.; Reed, S.D. Cost Savings with Implementation of PNA FISH Testing for Identification of Candida albicans in Blood Cultures. Diagn. Microbiol. Infect. Dis. 2006, 54, 277–282. [Google Scholar] [CrossRef]
- Forrest, G.N.; Mankes, K.; Jabra-Rizk, M.A.; Weekes, E.; Johnson, J.K.; Lincalis, D.P.; Venezia, R.A. Peptide Nucleic Acid Fluorescence in situ Hybridization-Based Identification of Candida albicans and Its Impact on Mortality and Antifungal Therapy Costs. J. Clin. Microbiol. 2006, 44, 3381–3383. [Google Scholar] [CrossRef]
- Tsuchida, S.; Umemura, H.; Nakayama, T. Current Status of Matrix-Assisted Laser. Molecules 2020, 25, 4775. [Google Scholar] [CrossRef]
- Clark, A.E.; Kaleta, E.J.; Arora, A.; Wolk, D.M. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry: A Fundamental Shift in the Routine Practice of Clinical Microbiology. Clin. Microbiol. Rev. 2013, 26, 547–603. [Google Scholar] [CrossRef] [Green Version]
- Dhiman, N.; Hall, L.; Wohlfiel, S.L.; Buckwalter, S.P.; Wengenack, N.L. Performance and Cost Analysis of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Routine Identification of Yeast. J. Clin. Microbiol. 2011, 49, 1614–1616. [Google Scholar] [CrossRef]
- Hamprecht, A.; Christ, S.; Oestreicher, T.; Plum, G.; Kempf, V.A.J.; Göttig, S. Performance of Two MALDI-TOF MS Systems for the Identification of Yeasts Isolated from Bloodstream Infections and Cerebrospinal Fluids Using a Time-Saving Direct Transfer Protocol. Med. Microbiol. Immunol. 2014, 203, 93–99. [Google Scholar] [CrossRef]
- Singhal, N.; Kumar, M.; Kanaujia, P.K.; Virdi, J.S. MALDI-TOF Mass Spectrometry: An Emerging Technology for Microbial Identification and Diagnosis. Front. Microbiol. 2015, 6, 1–16. [Google Scholar] [CrossRef] [PubMed]
- De Carolis, E.; Hensgens, L.A.M.; Vella, A.; Posteraro, B.; Sanguinetti, M.; Senesi, S.; Tavanti, A. Identification and Typing of the Candida parapsilosis Complex: MALDI-TOF MS vs. AFLP. Med. Mycol. 2014, 52, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Oviaño, M.; Rodríguez-Sánchez, B. MALDI-TOF Mass Spectrometry in the 21st Century Clinical Microbiology Laboratory. Enferm. Infecc. Microbiol. Clin. 2021, 39, 192–200. [Google Scholar] [CrossRef]
- Molkenthin, F.; Hertel, M.; Neumann, K.; Schmidt-Westhausen, A.M. Factors Influencing the Presence of Candida dubliniensis and Other Non-albicans Species in Patients with Oral Lichen Planus: A Retrospective Observational Study. Clin. Oral Investig. 2022, 26, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, Z.; Andrusiów, S.; Pajączkowska, M.; Janczura, A. Identification of Fungi Isolated from Oral Cavity of Patients with HIV Using MALDI-TOF MS. J. Clin. Med. 2021, 10, 1570. [Google Scholar] [CrossRef] [PubMed]
- Wei, P.; Fu, J.-Y.; Zahng, Y.-F.; Lyu, X.; Guan, X.-B.; Yan, Z.-M.; Chen, F.; Hua, H. Diagnostic Accuracy of MALDI-TOF Mass Spectrum in Identification of Oral Candidiasis Isolates. Shanghai Kou Qiang Yi Xue 2020, 29, 567–572. [Google Scholar] [PubMed]
- Pinto, A.; Halliday, C.; Zahra, M.; Van Hal, S.; Olma, T.; Maszewska, K.; Iredell, J.R.; Meyer, W.; Chen, S.C. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Identification of Yeasts Is Contingent on Robust Reference Spectra. PLoS One 2011, 6, e25712. [Google Scholar] [CrossRef]
- Marklein, G.; Josten, M.; Klanke, U.; Müller, E.; Horré, R.; Maier, T.; Wenzel, T.; Kostrzewa, M.; Bierbaum, G.; Hoerauf, A.; et al. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Fast and Reliable Identification of Clinical Yeast Isolates. J. Clin. Microbiol. 2009, 47, 2912–2917. [Google Scholar] [CrossRef] [Green Version]
- Spanu, T.; Posteraro, B.; Fiori, B.; D’Inzeo, T.; Campoli, S.; Ruggeri, A.; Tumbarello, M.; Canu, G.; Trecarichi, E.M.; Parisi, G.; et al. Direct MALDI-TOF Mass Spectrometry Assay of Blood Culture Broths for Rapid Identification of Candida Species Causing Bloodstream Infections: An Observational Study in Two Large Microbiology Laboratories. J. Clin. Microbiol. 2011, 50, 176–179. [Google Scholar] [CrossRef]
- Montoya, A.M.; Luna-Rodríguez, C.E.; Bonifaz, A.; Treviño-Rangel, R.d.J.; Rojas, O.C.; González, G.M. Physiological Characterization and Molecular Identification of Some Rare Yeast Species Causing Onychomycosis. J. Med. Mycol. 2021, 31, 101121. [Google Scholar] [CrossRef]
- Oliver, J.C.; Laghi, L.; Parolin, C.; Foschi, C.; Marangoni, A.; Liberatore, A.; Dias, A.L.T.; Cricca, M.; Vitali, B. Metabolic Profiling of Candida Clinical Isolates of Different Species and Infection Sources. Sci. Rep. 2020, 10, 16716. [Google Scholar] [CrossRef] [PubMed]
- Scapaticci, M.; Bartolini, A.; Del Chierico, F.; Accardi, C.; Di Girolamo, F.; Masotti, A.; Muraca, M.; Putignani, L. Phenotypic Typing and Epidemiological Survey of Antifungal Resistance of Candida Species Detected in Clinical Samples of Italian Patients in a 17 Months’ Period. GERMS 2018, 8, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Schell, W.A.; Johnson, M.D.; Alexander, B.D.; Perfect, J.R.; Smith, P.B.; Benjamin, D.K.; Mitchell, T.G.; Benton, J.L.; Poore, M.; Rouse, J.L.; et al. Evaluation of a Digital Microfluidic Real-Time PCR Platform to Detect DNA of Candida albicans in Blood. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 2237–2245. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Xie, Y.; Zhang, N.; Li, W.; Liu, C.; Li, D.; Bian, S.; Jiang, Y.; Yang, Z.; Li, R.; et al. Evaluation of Droplet Digital PCR Assay for the Diagnosis of Candidemia in Blood Samples. Front. Microbiol. 2021, 12, 700008. [Google Scholar] [CrossRef]
- Fajarningsih, N.D. Internal Transcribed Spacer (ITS) as DNA Barcoding to Identify Fungal Species: A Review. Squalen Bull. Mar. Fish. Postharvest Biotechnol. 2016, 11, 37. [Google Scholar] [CrossRef]
- Sandini, S.; Stringaro, A.; Arancia, S.; Colone, M.; Mondello, F.; Murtas, S.; Girolamo, A.; Mastrangelo, N.; De Bernardis, F. The MP65 Gene Is Required for Cell Wall Integrity, Adherence to Epithelial Cells and Biofilm Formation in Candida albicans. BMC Microbiol. 2011, 11, 106. [Google Scholar] [CrossRef]
- Branco, J.; Fonseca, E.; Gomes, N.C.; Martins-Cruz, C.; Silva, A.P.; Silva-Dias, A.; Pina-Vaz, C.; Rodrigues, A.G.; Miranda, I.M.; Erraught, C.; et al. Impact of ERG3 Mutations and Expression of Ergosterol Genes Controlled by UPC2 and NDT80 in Candida parapsilosis Azole Resistance. Clin. Microbiol. Infect. 2017, 23, 575.e1–575.e8. [Google Scholar] [CrossRef]
- Martel, C.M.; Parker, J.E.; Bader, O.; Weig, M.; Gross, U.; Warrilow, A.G.S.; Kelly, D.E.; Kelly, S.L. A Clinical Isolate of Candida albicans with Mutations in ERG11 (Encoding Sterol 14α-Demethylase) and ERG5 (Encoding C22 Desaturase) Is Cross Resistant to Azoles and Amphotericin B. Antimicrob. Agents Chemother. 2010, 54, 3578–3583. [Google Scholar] [CrossRef] [Green Version]
- Arastehfar, A.; Marcet-Houben, M.; Daneshnia, F.; Taj-Aldeen, S.J.; Batra, D.; Lockhart, S.R.; Shor, E.; Gabaldón, T.; Perlin, D.S. Comparative Genomic Analysis of Clinical Candida glabrata Isolates Identifies Multiple Polymorphic Loci That Can Improve Existing Multilocus Sequence Typing Strategy. Stud. Mycol. 2021, 100, 1–15. [Google Scholar] [CrossRef]
- Muñoz, M.; Wintaco, L.M.; Muñoz, S.A.; Ramírez, J.D. Dissecting the Heterogeneous Population Genetic Structure of Candida albicans: Limitations and Constraints of the Multilocus Sequence Typing Scheme. Front. Microbiol. 2019, 10, 1–16. [Google Scholar] [CrossRef]
- Huang, X.; Welsh, R.M.; Deming, C.; Proctor, D.M.; Thomas, P.J.; Gussin, G.M.; Huang, S.S.; Kong, H.H.; Bentz, M.L.; Vallabhaneni, S.; et al. Skin Metagenomic Sequence Analysis of Early Candida auris Outbreaks in U.S. Nursing Homes. mSphere 2021, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Abharian, P.H.; Dehghan, P.; Abharian, P.H.; Tolouei, S. Molecular Characterization of Candida dubliniensis and Candida albicans in the Oral Cavity of Drug Abusers Using Duplex Polymerase Chain Reaction. Curr. Med. Mycol. 2018, 4, 12–17. [Google Scholar] [CrossRef] [PubMed]
Blood Samples | Oral Samples | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Azoles | Echinocandins | Azoles | ||||||||
AmB | FLU | ITRA | VOR | POS | MICA | CASP | AmB | FLU | VOR | |
C. albicans | S | R | S | I | I-R | S-I | S-I | S | S | S |
C. tropicalis | S | R | S | S-I | I-R | S | S-I | S | S | S |
C. parapsilosis | S | R | S | S-I | S | S | S | - | - | - |
C. glabrata | S-I | R | I | S-I | I-R | S-I | S | S | S | S |
C. krusei | S | R | S-I-R | S | S | S | S | S | R | S |
C. lusitaniae | S | I | S | S | S | S | S | - | - | - |
C. auris | S-I | R | R | R | - | R | R | - | - | - |
Molecular Technique | Advantages | Disadvantages |
---|---|---|
Conventional PCR | Low cost compared with other PCR-based techniques, low in complexity | Requires an additional amplification detection step |
RT-PCR | Real-time detection and quantification, no additional step of detection | Expensive equipment |
Nested PCR | Sequence primers available for different gene targets | Requires more reagents than other PCR-based techniques and an additional set of primers. Prone to contamination |
Multiplex PCR | Detection of multiple gene targets | Requires an additional amplification detection step |
RFLP | High specificity, Sequence primers available for different gene targets | High-cost enzymes and storage, requires an additional amplification detection step. |
HRMA | Low risk of contamination when compared to RFLP or nested PCR | Not capable of distinguishing between some Candida spp. |
MLST | High discriminatory power, useful for epidemiological studies, and evolution of virulence-associated mechanisms | High cost |
LAMP | High specificity, high sensitivity, high-speed, low-cost equipment. Several methods for amplification detection | Requires attention in optimization and primer design |
NGS | High discriminatory power, large dataset allows for additional analysis | High cost, complex results which require specialized analysis |
PNA FISH | Rapid identification of Candida spp. in blood cultures | Results visualization adds a cost to equipment |
MALDI-TOF MS | High specificity, rapid identification | High cost of equipment, lack of spectra characterization for comparison |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magalhães, J.; Correia, M.J.; Silva, R.M.; Esteves, A.C.; Alves, A.; Duarte, A.S. Molecular Techniques and Target Selection for the Identification of Candida spp. in Oral Samples. Appl. Sci. 2022, 12, 9204. https://doi.org/10.3390/app12189204
Magalhães J, Correia MJ, Silva RM, Esteves AC, Alves A, Duarte AS. Molecular Techniques and Target Selection for the Identification of Candida spp. in Oral Samples. Applied Sciences. 2022; 12(18):9204. https://doi.org/10.3390/app12189204
Chicago/Turabian StyleMagalhães, Joana, Maria José Correia, Raquel M. Silva, Ana Cristina Esteves, Artur Alves, and Ana Sofia Duarte. 2022. "Molecular Techniques and Target Selection for the Identification of Candida spp. in Oral Samples" Applied Sciences 12, no. 18: 9204. https://doi.org/10.3390/app12189204
APA StyleMagalhães, J., Correia, M. J., Silva, R. M., Esteves, A. C., Alves, A., & Duarte, A. S. (2022). Molecular Techniques and Target Selection for the Identification of Candida spp. in Oral Samples. Applied Sciences, 12(18), 9204. https://doi.org/10.3390/app12189204