An Iterative Guidance and Navigation Algorithm for Orbit Rendezvous of Cooperating CubeSats
Abstract
:1. Introduction
2. Equations of Motion
3. Guidance and Navigation
3.1. Guidance
- calculate ; if , then set ;
- evaluate the displacement vectors and at ;
- calculate by using Equation (8);
- using the definitions of the displaced position and velocity coordinates, obtain the spherical coordinates of position and velocity of the chaser (r, , , , , ) at ;
- propagate numerically the nonlinear Equation (1) in the interval ;
- if , then evaluate at .
3.2. Navigation
4. Numerical Simulations
4.1. Nominal Simulation
4.2. Monte Carlo Simulation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DOF | Degrees Of Freedom |
EKF | Extended Kalman Filter |
GNC | Guidance, Navigation, and Control |
HCW | Hill-Clohessy-Wiltshire |
ISL | Inter-Satellite Link |
RAAN | Right Ascension of the Ascending Node |
UF | Unscented Filter |
References
- D’Amico, S.; Bodin, P.; Delpech, M.; Noteborn, R. Prisma. In Distributed Space Missions for Earth System Monitoring; Springer: Berlin/Heidelberg, Germany, 2013; pp. 599–637. [Google Scholar]
- Gasbarri, P.; Sabatini, M.; Palmerini, G. Ground tests for vision based determination and control of formation flying spacecraft trajectories. Acta Astronaut. 2014, 102, 378–391. [Google Scholar] [CrossRef]
- Forshaw, J.L.; Aglietti, G.S.; Navarathinam, N.; Kadhem, H.; Salmon, T.; Pisseloup, A.; Joffre, E.; Chabot, T.; Retat, I.; Axthelm, R.; et al. RemoveDEBRIS: An in-orbit active debris removal demonstration mission. Acta Astronaut. 2016, 127, 448–463. [Google Scholar] [CrossRef]
- Prussing, J. Optimal Four-Impulse Fixed-Time Rendezvous in the Vicinity of a Circular Orbit. AIAA J. 1969, 7, 928–935. [Google Scholar] [CrossRef]
- Prussing, J. Optimal Two- and Three-Impulse Fixed-Time Rendezvous in the Vicinity of a Circular Orbit. AIAA J. 1970, 8, 1221–1228. [Google Scholar] [CrossRef]
- Carter, T.; Humi, M. Fuel-Optimal Maneuvers of a Spacecraft Relative to a Point in Circular Orbit. J. Guid. Control. Dyn. 1987, 10, 567–573. [Google Scholar] [CrossRef]
- Carter, T. Fuel-Optimal Rendezvous Near a Point in General Keplerian Orbit. J. Guid. Control. Dyn. 1984, 7, 710–716. [Google Scholar] [CrossRef]
- Pontani, M.; Conway, B. Minimum-Fuel Finite-Thrust Relative Orbit Maneuvers via Indirect Heuristic Method. J. Guid. Control. Dyn. 2015, 38, 913–924. [Google Scholar] [CrossRef]
- Prussing, J.E.; Chiu, J.H. Optimal multiple-impulse time-fixed rendezvous between circular orbits. J. Guid. Control. Dyn. 1986, 9, 17–22. [Google Scholar] [CrossRef]
- Pontani, M.; Ghosh, P.; Conway, B.A. Particle swarm optimization of multiple-burn rendezvous trajectories. J. Guid. Control. Dyn. 2012, 35, 1192–1207. [Google Scholar] [CrossRef]
- Hablani, H.B.; Tapper, M.L.; Dana-Bashian, D.J. Guidance and relative navigation for autonomous rendezvous in a circular orbit. J. Guid. Control. Dyn. 2002, 25, 553–562. [Google Scholar] [CrossRef]
- Machuca, P.; Sánchez, J.P. CubeSat Autonomous Navigation and Guidance for Low-Cost Asteroid Flyby Missions. J. Spacecr. Rocket. 2021, 58, 1858–1875. [Google Scholar] [CrossRef]
- Pirat, C.; Ankersen, F.; Walker, R.; Gass, V. and μ-Synthesis for Nanosatellites Rendezvous and Docking. IEEE Trans. Control. Syst. Technol. 2019, 28, 1050–1057. [Google Scholar] [CrossRef]
- Prussing, J.E.; Conway, B.A. Orbital Mechanics; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Pirat, C.; Ankersen, F.; Walker, R.; Gass, V. Vision based navigation for autonomous cooperative docking of CubeSats. Acta Astronaut. 2018, 146, 418–434. [Google Scholar] [CrossRef]
- Segal, S.; Carmi, A.; Gurfil, P. Stereovision-based estimation of relative dynamics between noncooperative satellites: Theory and experiments. IEEE Trans. Control. Syst. Technol. 2013, 22, 568–584. [Google Scholar] [CrossRef]
- Woffinden, D.C.; Geller, D.K. Observability criteria for angles-only navigation. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 1194–1208. [Google Scholar] [CrossRef]
- Battistini, S.; Shima, T. Differential games missile guidance with bearings-only measurements. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 2906–2915. [Google Scholar] [CrossRef]
- Mok, S.H.; Pi, J.; Bang, H. One-step rendezvous guidance for improving observability in bearings-only navigation. Adv. Space Res. 2020, 66, 2689–2702. [Google Scholar] [CrossRef]
- Geller, D.K.; Klein, I. Angles-only navigation state observability during orbital proximity operations. J. Guid. Control. Dyn. 2014, 37, 1976–1983. [Google Scholar] [CrossRef]
- Cassinis, L.P.; Fonod, R.; Gill, E. Review of the robustness and applicability of monocular pose estimation systems for relative navigation with an uncooperative spacecraft. Prog. Aerosp. Sci. 2019, 110, 100548. [Google Scholar] [CrossRef]
- Ferrari, F.; Franzese, V.; Pugliatti, M.; Giordano, C.; Topputo, F. Preliminary mission profile of Hera’s Milani CubeSat. Adv. Space Res. 2021, 67, 2010–2029. [Google Scholar] [CrossRef]
- Cavenago, F.; Di Lizia, P.; Massari, M.; Wittig, A. On-board spacecraft relative pose estimation with high-order extended Kalman filter. Acta Astronaut. 2019, 158, 55–67. [Google Scholar] [CrossRef]
- Fraser, C.T.; Ulrich, S. Adaptive extended Kalman filtering strategies for spacecraft formation relative navigation. Acta Astronaut. 2021, 178, 700–721. [Google Scholar] [CrossRef]
- Battistini, S.; Cappelletti, C.; Graziani, F. Results of the attitude reconstruction for the UniSat-6 microsatellite using in-orbit data. Acta Astronaut. 2016, 127, 87–94. [Google Scholar] [CrossRef]
- Tang, X.; Yan, J.; Zhong, D. Square-root sigma-point Kalman filtering for spacecraft relative navigation. Acta Astronaut. 2010, 66, 704–713. [Google Scholar] [CrossRef]
- Menegaz, H.M.; Ishihara, J.Y.; Borges, G.A.; Vargas, A.N. A systematization of the unscented Kalman filter theory. IEEE Trans. Autom. Control. 2015, 60, 2583–2598. [Google Scholar] [CrossRef]
- Wan, E.A.; Van Der Merwe, R. The unscented Kalman filter. In Kalman Filtering and Neural Networks; Wiley: Hoboken, NJ, USA, 2001; pp. 221–280. [Google Scholar]
- Branz, F.; Olivieri, L.; Sansone, F.; Francesconi, A. Miniature docking mechanism for CubeSats. Acta Astronaut. 2020, 176, 510–519. [Google Scholar] [CrossRef]
Quantity | Value | Quantity | Value | Quantity | Value |
---|---|---|---|---|---|
500 m | 1 | 1 | |||
1 m/s | 1 m/s | 1 m/s | |||
1 | 5 × 10−7 | 600 s | |||
0.25 s | 0.25 s |
Variable | Accuracy | Variable | Accuracy | Variable | Accuracy |
---|---|---|---|---|---|
r | 20 m | 0.001 | 0.001 | ||
0.25 m/s | 0.4 m/s | 1 m/s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Battistini, S.; De Angelis, G.; Pontani, M.; Graziani, F. An Iterative Guidance and Navigation Algorithm for Orbit Rendezvous of Cooperating CubeSats. Appl. Sci. 2022, 12, 9250. https://doi.org/10.3390/app12189250
Battistini S, De Angelis G, Pontani M, Graziani F. An Iterative Guidance and Navigation Algorithm for Orbit Rendezvous of Cooperating CubeSats. Applied Sciences. 2022; 12(18):9250. https://doi.org/10.3390/app12189250
Chicago/Turabian StyleBattistini, Simone, Giulio De Angelis, Mauro Pontani, and Filippo Graziani. 2022. "An Iterative Guidance and Navigation Algorithm for Orbit Rendezvous of Cooperating CubeSats" Applied Sciences 12, no. 18: 9250. https://doi.org/10.3390/app12189250
APA StyleBattistini, S., De Angelis, G., Pontani, M., & Graziani, F. (2022). An Iterative Guidance and Navigation Algorithm for Orbit Rendezvous of Cooperating CubeSats. Applied Sciences, 12(18), 9250. https://doi.org/10.3390/app12189250