Designing a Hybrid Equipment-Failure Diagnosis Mechanism under Mixed-Type Data with Limited Failure Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Pre-Processing
2.2. Limit-Data Generating Process
2.2.1. Synthetic Minority Oversampling Technique-Nominal Continuous (SmoteNC)
Algorithm 1: SmoteNC(Pseudocode) |
Input: Training data set T Which contains failure dataset (minority class) S Output: Synthesized failure dataset Snew User defined parameter for k-nearest neighbors (Default k = 5)
|
2.2.2. Conditional Tabular Generative Adversarial Network (ctGAN)
Algorithm 2: ctGAN(Pseudocode) |
Input: the training set of the fault data F, which includes The original training set S and the synthetic Snew by SmoteNC Output: Synthesized failure dataset Gnew by ctGAN //user setting Generate number
|
2.2.3. Data Combination
Algorithm 3: SmoteNC–ctGAN (Pseudocode) |
Input: Training set T, which contains failure dataset (minority class) S Output: Synthesized failure dataset Tnew
|
2.3. Model Learning and Applications
2.3.1. CatBoost Classifier and Optuna
2.3.2. Model Evaluation
3. Results
3.1. Dataset Description
- Product ID: Product ID, which represents categorical data, is a key feature used to distinguish the type of product processed and consists of a letter Low (50%), medium (30%), High (20%) as product quality variants.
- Air temperature: Air temperature, which represents numerical data, refers to the temperature of the environment (between 2 K and 300 K after normalization).
- Process temperature (K): Process temperature, which represents numerical data, refers to the temperature of the production process.
- Rotational speed (rpm): Rotational speed, which represents numerical data, refers to the rotational speed of the main shaft.
- Torque (Nm): Torque represents a type of numerical data and is generally equal to 40 Nm where ε = 10 and no negative values.
- Tool wear (min): Tool wear, which represents numerical data, refers to the tool operation time.
- 7.
- Tool wear failure (TWF): Tool wear failure causes a process failure.
- 8.
- Heat dissipation failure (HDF): Heat dissipation causes a process failure.
- 9.
- Power failure (PWF): Power failure causes a process failure.
- 10.
- Overstrain failure (OSF): OSF refers to the failure caused by overstrain in the production process.
- 11.
- Random failures (RNF): RNFs are failures whose cause cannot be determined. Their occurrence probability in the production process is 0.1%.
- 12.
- Machine failure: The original two-category label (0 represents normal, and 1 represents failure) was changed into a multicategory label (0 represents normal, 1 represents TWF, 2 represents HDF, 3 represents PWF, 4 represents OSF, and 5 represents RNF) to verify the multicategory prediction accuracy of the proposed model.
3.2. Experiment Setting
3.3. Parameter Setting
3.4. Experiment Results
4. Discussion
4.1. The Focus of Prediction Is to Detect Equipment Failure, Not Normal Operation
4.2. Necessity of Processing Data with Hybrid Features in Limited Data Sets
4.3. Interpretability of the Equipment Failure Prediction Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chang, Y.I.; Shei-Dei Yang, S.; Chuang, Y.C.; Shen, J.H.; Lin, C.C.; Li, C.E. Automatic Classification of Uroflow Patterns via the Grading-based Approach. J. Inf. Sci. Eng. 2022, 38, 463–477. [Google Scholar]
- Shen, J.H.; Chen, M.Y.; Lu, C.T.; Wang, R.H. Monitoring spatial keyword queries based on resident domains of mobile objects in IoT environments. Mob. Netw. Appl. 2020, 27, 208–218. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, R.; Li, X.; Chen, D.; Hu, Q. Task-Sequencing Meta Learning for Intelligent Few-Shot Fault Diagnosis with Limited Data. IEEE Trans. Industr. Inform. 2022, 18, 3894–3904. [Google Scholar] [CrossRef]
- Jeong, S.; Shen, J.H.; Ahn, B. A study on smart healthcare monitoring using IoT based on blockchain. Wirel. Commun. Mob. Comput. 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Liu, J.C.; Yang, C.T.; Chan, Y.W.; Kristiani, E.; Jiang, W.J. Cyberattack detection model using deep learning in a network log system with data visualization. J. Supercomput. 2021, 77, 10984–11003. [Google Scholar] [CrossRef]
- Yang, C.T.; Liu, J.C.; Kristiani, E.; Liu, M.L.; You, I.; Pau, G. Netflow monitoring and cyberattack detection using deep learning with ceph. IEEE Access 2020, 8, 7842–7850. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.; Wang, H. Few-shot steel surface defect detection. IEEE Trans. Instrum. Meas. 2022, 71, 1–12. [Google Scholar] [CrossRef]
- Zhang, A.; Li, S.; Cui, Y.; Yang, W.; Dong, R.; Hu, J. Limited data rolling bearing fault diagnosis with few-shot learning. IEEE Access Pract. Innov. Open Solut. 2019, 7, 110895–110904. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Zhu, K.; Zhang, Y.; Li, Y. Diagnosis of interturn short-circuit faults in permanent magnet synchronous motors based on few-shot learning under a federated learning framework. IEEE Trans. Ind. Inform. 2021, 17, 8495–8504. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, J.; He, S.; Zhou, Z. Prior knowledge-augmented self-supervised feature learning for few-shot intelligent fault diagnosis of machines. IEEE Trans. Ind. Electron. 2022, 69, 10573–10584. [Google Scholar] [CrossRef]
- Zhou, X.; Liang, W.; Shimizu, S.; Ma, J.; Jin, Q. Siamese Neural Network Based Few-Shot Learning for Anomaly Detection in Industrial Cyber-Physical Systems. IEEE Trans. Ind. Inform. 2021, 17, 5790–5798. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority over-Sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, H.; Wang, J.; Yuan, S.; Feng, W. LSTM-GAN-AE: A promising approach for fault diagnosis in machine health monitoring. IEEE Trans. Instrum. Meas. 2022, 71, 1–13. [Google Scholar] [CrossRef]
- Moon, J.; Jung, S.; Park, S.; Hwang, E. Conditional tabular GAN-based two-stage data generation scheme for short-term load forecasting. IEEE Access Pract. Innov. Open Solut. 2020, 8, 205327–205339. [Google Scholar] [CrossRef]
- Dablain, D.; Krawczyk, B.; Chawla, N.V. DeepSMOTE: Fusing Deep Learning and SMOTE for Imbalanced Data. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1–15. [Google Scholar] [CrossRef]
- Sharma, A.; Singh, P.K.; Chandra, R. SMOTified-GAN for Class Imbalanced Pattern Classification Problems. IEEE Access 2022, 10, 30655–30665. [Google Scholar] [CrossRef]
- Kim, J.; Park, H. OA-GAN: Overfitting Avoidance Method of GAN Oversampling Based on XAI. In Proceedings of the 2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN), Jeju Island, Korea, 17–20 August 2021; pp. 394–398. [Google Scholar]
- Mukherjee, M.; Khushi, M. SMOTE-ENC: A Novel SMOTE-Based Method to Generate Synthetic Data for Nominal and Continuous Features. Appl. Syst. Innov. 2021, 4, 18. [Google Scholar] [CrossRef]
- Xu, L.; Skoularidou, M.; Cuesta-Infante, A.; Veeramachaneni, K. Modeling Tabular Data Using Conditional GAN. arXiv 2019, arXiv:1907.00503. [Google Scholar]
- Pradipta, G.A.; Wardoyo, R.; Musdholifah, A.; Sanjaya, I.N.H.; Ismail, M. SMOTE for Handling Imbalanced Data Problem: A Review. In Proceedings of the 2021 Sixth International Conference on Informatics and Computing (ICIC), Jakarta, Indonesia, 3–4 November 2021; pp. 1–8. [Google Scholar]
- Xu, Z.; Shen, D.; Nie, T.; Kou, Y. A Hybrid Sampling Algorithm Combining M-SMOTE and ENN Based on Random Forest for Medical Imbalanced Data. J. Biomed. Inform. 2020, 107, 103465. [Google Scholar] [CrossRef]
- Martin, A.; Chintala, S.; Bottou, L. Wasserstein GAN. arXiv 2017. [Google Scholar] [CrossRef]
- Zinan, L.; Khetan, A.; Fanti, G.; Oh, S. PacGAN: The Power of Two Samples in Generative Adversarial Networks. arXiv 2017. [Google Scholar] [CrossRef]
- Chunsheng, A.; Sun, J.; Wang, Y.; Wei, Q. A K-Means Improved CTGAN Oversampling Method for Data Imbalance Problem. In Proceedings of the 2021 IEEE 21st International Conference on Software Quality, Reliability and Security (QRS), Hainan, China, 6–10 December 2021; pp. 883–887. [Google Scholar]
- Nascita, A.; Montieri, A.; Aceto, G.; Ciuonzo, D.; Persico, V.; Pescape, A. XAI meets mobile traffic classification: Understanding and improving multimodal deep learning architectures. IEEE Trans. Netw. Serv. Manag. 2021, 18, 4225–4246. [Google Scholar] [CrossRef]
- Dorogush, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient Boosting with Categorical Features Support. arXiv 2018, arXiv:1810.11363. [Google Scholar]
- Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A next-Generation Hyperparameter Optimization Framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery Data Mining, Anchorage, AK, USA, 4–8 August 2019; ACM: New York, NY, USA, 2019. [Google Scholar]
- Matthews, B.W. Comparison of the Predicted and Observed Secondary Structure of T4 Phage Lysozyme. Biochim. Biophys. Acta-(BBA)-Protein Struct. 1975, 405, 442–451. [Google Scholar] [CrossRef]
- Henning, B.K.; Ong, C.S.; Stephan, K.E.; Buhmann, M.J. The Balanced Accuracy and Its Posterior Distribution. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 3121–3124.
- Ioannis, M.; Rallis, I.; Georgoulas, I.; Kopsiaftis, G.; Doulamis, A.; Doulamis, N. Multiclass Confusion Matrix Reduction Method and Its Application on Net Promoter Score Classification Problem. Technologies 2021, 9, 81. [Google Scholar] [CrossRef]
- Stephen, S.V. Selecting and Interpreting Measures of Thematic Classification Accuracy. Remote Sens. Environ. 1997, 62, 77–89. [Google Scholar] [CrossRef]
- Dua, D.; Graff, C. UCI Machine Learning Repository; University of California Irvine: Irvine, CA, USA, 2017. [Google Scholar]
- Matzka, S. Explainable Artificial Intelligence for Predictive Maintenance Applications. In Proceedings of the 2020 Third International Conference on Artificial Intelligence for Industries (AI4I), Irvine, CA, USA, 21–23 September 2020; pp. 69–74. [Google Scholar]
- Mendel, J.M.; Bonissone, P.P. Critical thinking about explainable AI (XAI) for rule-based fuzzy systems. IEEE Trans. Fuzzy Syst. 2021, 29, 3579–3593. [Google Scholar] [CrossRef]
A Small Amount of Minority Class to Synthesize New Fault Data | Mixed-Type Data | Synthetic Data Representation | Solution | |
---|---|---|---|---|
SmoteNC [12] | YES | YES | NO | The ctGAN was used to overcome the drawback of SmoteNC, namely the lack of sample representativeness. |
GAN [14] | NO | NO | YES | CtGAN can overcome the inability to apply to Mixed-Type Data. |
ctGAN [19] | NO | YES | YES | The oversampling method can increase the minority class data, which can provide enough data for ctGAN training model. |
SmoteNC–ctGAN | YES | YES | YES |
Actual Condition | |||
---|---|---|---|
Prediction Condition | Failure | Normal | |
Failure | TP (True Positive) | FP (False Positive) | |
Normal | FN (False Negative) | TN (True Negative) |
Round (Cross Validation) | Total | Training Set | Test Set |
---|---|---|---|
Each Round | 10,000 (100%) | 6700 | 3300 |
Failure Mode | Total Traning Set | Traning Set (Original Training Data) | SMOTE-NC | ctGAN |
---|---|---|---|---|
TWF | 19,658 | 6700 (Contains 27 Failure) | 6673 (Failure) | 6700 (Failure) |
HDF | 19,658 | 6700 (Contains 80 Failure) | 6620 (Failure) | 6700 (Failure) |
OSF | 19,658 | 6700 (Contains 62 Failure) | 6638 (Failure) | 6700 (Failure) |
PWF | 19,658 | 6700 (Contains 60 Failure) | 6640 (Failure) | 6700 (Failure) |
RNF | 19,658 | 6700 (Contains 12 Failure) | 6688 (Failure) | 6700 (Failure) |
Machine Failure | 19,658 | 6700 (Contains 221 Failure) | 6479 (Failure) | 6700 (Failure) |
Parameter | Value |
---|---|
echo | 10 |
Size of the output samples | Generator: (256,256) Discriminator: (256,256) |
Optimizer | Adam |
Learning Rate | 0.0002 |
Loss Function | lower-bound (ELBO) loss |
Activation | ReLU |
Number of generated failure data | 6700 (Same as the number of failures in the training set) |
Parameter | Value |
---|---|
Iterations | 50 |
Depth | 6 |
Learning rate | 0.18176 |
Early stopping rounds | 10 |
Bagging temperature | 0.8278 |
Iterations | 50 |
Depth | 6 |
Actual | |||
---|---|---|---|
Prediction | Failure | Normal | |
Failure | 17 | 244 | |
Normal | 2 | 3037 |
Method | Recall Rate | Accuracy | Balanced Accuracy |
---|---|---|---|
CatBoost (non-oversampling) | 0.0000 | 0.9942 | 0.5000 |
SmoteNC + CatBoost | 0.3684 | 0.9718 | 0.6719 |
ctGAN + CatBoost | 0.5263 | 0.9500 | 0.7394 |
SmoteNC + ctGAN + CatBoost (The proposed method) | 0.8947 | 0.9255 | 0.9102 |
Actual | |||
---|---|---|---|
Prediction | Failure | Normal | |
Failure | 34 | 63 | |
Normal | 1 | 3202 |
Method | Recall Rate | Accuracy | Balanced Accuracy |
---|---|---|---|
CatBoost (non-oversampling) | 0.5143 | 0.9948 | 0.7571 |
SmoteNC + CatBoost | 0.9429 | 0.9888 | 0.9661 |
ctGAN + CatBoost | 0.9714 | 0.9785 | 0.9750 |
SmoteNC + ctGAN + CatBoost (The proposed method) | 0.9714 | 0.9806 | 0.9761 |
Actual | |||
---|---|---|---|
Prediction | Failure | Normal | |
Failure | 35 | 80 | |
Normal | 0 | 3185 |
Method | Recall Rate | Accuracy | Balanced Accuracy |
---|---|---|---|
CatBoost (non-oversampling) | 0.4857 | 0.9942 | 0.7427 |
SmoteNC + CatBoost | 1.0000 | 0.9579 | 0.9787 |
ctGAN + CatBoost | 1.0000 | 0.9715 | 0.9856 |
SmoteNC + ctGAN + CatBoost (The proposed method) | 1.0000 | 0.9758 | 0.9877 |
Actual | |||
---|---|---|---|
Prediction | Failure | Normal | |
Failure | 36 | 127 | |
Normal | 0 | 3137 |
Method | Recall Rate | Accuracy | Balanced Accuracy |
---|---|---|---|
CatBoost (non-oversampling) | 0.5833 | 0.9952 | 0.7915 |
SmoteNC + CatBoost | 0.9722 | 0.9870 | 0.9797 |
ctGAN + CatBoost | 0.9722 | 0.9742 | 0.9732 |
SmoteNC + ctGAN + CatBoost (The proposed method) | 1.0000 | 0.9615 | 0.9805 |
Actual | |||
---|---|---|---|
Prediction | Failure | Normal | |
Failure | 6 | 1911 | |
Normal | 1 | 1382 |
Method | Recall Rate | Accuracy | Balanced Accuracy |
---|---|---|---|
CatBoost (non-oversampling) | 0.0000 | 0.9979 | 0.5000 |
SmoteNC + CatBoost | 0.2857 | 0.8615 | 0.5742 |
ctGAN + CatBoost | 0.0000 | 0.9882 | 0.4951 |
SmoteNC + ctGAN + CatBoost (The proposed method) | 0.8571 | 0.4206 | 0.6384 |
Recall Rate | Accuracy | Balanced Accuracy | |
---|---|---|---|
CatBoost (non-oversampling) | 0.2868 | 0.9687 | 0.6423 |
SmoteNC + CatBoost | 0.7881 | 0.9670 | 0.8809 |
ctGAN + CatBoost | 0.8305 | 0.9082 | 0.8708 |
SmoteNC + ctGAN + CatBoost (The proposed method) | 0.9068 | 0.8712 | 0.8883 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-H.; Tsung, C.-K.; Yu, S.-S. Designing a Hybrid Equipment-Failure Diagnosis Mechanism under Mixed-Type Data with Limited Failure Samples. Appl. Sci. 2022, 12, 9286. https://doi.org/10.3390/app12189286
Chen C-H, Tsung C-K, Yu S-S. Designing a Hybrid Equipment-Failure Diagnosis Mechanism under Mixed-Type Data with Limited Failure Samples. Applied Sciences. 2022; 12(18):9286. https://doi.org/10.3390/app12189286
Chicago/Turabian StyleChen, Cheng-Hui, Chen-Kun Tsung, and Shyr-Shen Yu. 2022. "Designing a Hybrid Equipment-Failure Diagnosis Mechanism under Mixed-Type Data with Limited Failure Samples" Applied Sciences 12, no. 18: 9286. https://doi.org/10.3390/app12189286
APA StyleChen, C. -H., Tsung, C. -K., & Yu, S. -S. (2022). Designing a Hybrid Equipment-Failure Diagnosis Mechanism under Mixed-Type Data with Limited Failure Samples. Applied Sciences, 12(18), 9286. https://doi.org/10.3390/app12189286