Effect of Non-Metallic Inclusions on the Fatigue Strength Coefficient of High-Purity Constructional Steel Heated in Industrial Conditions
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
- Fatigue strength coefficients for various microstructures in the function relative content of non-metallic inclusions;
- Qualitatively and quantitatively analyzed the occurrence of steel non-metallic inclusions;
- The influence of the relative amount of non-metallic inclusions on the fatigue strength factor of carbon steels with different tempering temperatures.
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kłysz, S. Selected problems of fatigue of materials and constructions elements. Tech. Sci. 2005, 8, 141–164. [Google Scholar]
- Kováčiková, P.; Dubec, A.; Kuricová, J. The microstructural study of a damaged motorcycle gear wheel. Manuf. Technol. 2021, 21, 83–90. [Google Scholar] [CrossRef]
- Blikharskyy, Y.; Selejdak, J.; Kopiika, N. Corrosion fatigue damages of rebars under loading in time. Materials 2021, 14, 3416. [Google Scholar] [CrossRef]
- Hren, I.; Michna, Š.; Novotný, J.; Michnová, L. Comprehensive analysis of the coated component from a FORD engine. Manuf. Technol. 2021, 21, 464–470. [Google Scholar] [CrossRef]
- Jopek, M. Determination of Carbon Steel Dynamic Properties. Manuf. Technol. 2021, 21, 479–482. [Google Scholar] [CrossRef]
- Suresh, S. Fatigue of Materials; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Lenkovskiy, T.M.; Kulyk, V.V.; Duriagina, Z.A.; Kovalchuk, R.A.; Topilnytskyy, V.H.; Vira, V.V.; Tepla, T.L. Mode I and mode II fatigue crack growth resistance characteristics of high tempered 65G steel. Arch. Mater. Sci. Eng. 2017, 84, 34–41. [Google Scholar] [CrossRef]
- Malashchenko, V.; Strilets, O.; Strilets, V.; Kłysz, S. Investigation of the energy effectiveness of multistage differential gears when the speed is changed by the carrier. Diagnostyka 2019, 20, 57–64. [Google Scholar] [CrossRef]
- Halford, G.L. Low Cycle Thermal Fatigue; NASA: Washington, DC, USA, 1986.
- Blikharskyy, Z.; Brózda, K.; Selejdak, J. Effectivenes of Strengthening Loaded RC Beams with FRCM System. Arch. Civ. Eng. 2018, 64, 3–13. [Google Scholar] [CrossRef]
- Milovanovi´c, V.; Duni´c, V.; Raki´c, D.; Živkovi’c, M. Identification causes of cracking on the underframe of wagon for containers transportation—fatigue strength assessment of wagon welded joints. Eng. Fail. Anal. 2013, 31, 118–131. [Google Scholar] [CrossRef]
- Roiko, A.; Hänninen, H.; Vuorikari, H. Anisotropic distribution of non-metallic inclusions in forged steel roll and its influence on fatigue limit. Int. J. Fatigue 2012, 41, 158–167. [Google Scholar] [CrossRef]
- Lipiński, T.; Ulewicz, R. The effect of the impurities spaces on the quality of structural steel working at variable loads. Open Eng. 2021, 11, 233–238. [Google Scholar] [CrossRef]
- Spriestersbach, D.; Grad, P.; Kerscher, E. Influence of different non-metallic inclusion types on the crack initiation in high-strength steels in the VHCF regime. Int. J. Fatigue 2014, 64, 114–120. [Google Scholar] [CrossRef]
- Lipiński, T.; Wach, A.; Detyna, E. Influence of Large Non-Metallic Inclusions on Bending Fatigue Strength Hardened and Tempered Steels. Adv. Mater. Sci. 2015, 15, 33–40. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, T.; Tang, G.; Gup, H.; Yan, J.; Gou, X.; Zhu, Y. Characterization of the morphological evolution of MnS inclusions in free-cutting steel during heating. J. Mater. Res. Technol. 2022, 17, 1427–1437. [Google Scholar] [CrossRef]
- Lipiński, T.; Wach, A. The effect of fine non-metallic inclusions on the fatigue strength of structural steel Terms and conditions. Arch. Metall. Mater. 2015, 60, 65–69. [Google Scholar] [CrossRef]
- Kocańda, S. Fatigue Failure of Metals; WNT Warsaw Poland: Warsaw, Poland, 1985. (In Polish) [Google Scholar]
- Milovanović, V.; Arsić, D.; Milutinović, M.; Živković, M.; Topalović, M.A. Comparison Study of Fatigue Behavior of S355J2+N, S690QL and X37CrMoV5-1 Steel. Metals 2022, 12, 1199. [Google Scholar] [CrossRef]
- Ulewicz, R.; Szataniak, P.; Novy, F.; Trsko, L.; Bokuvka, O. Fatigue Characteristics of Structural Steels in the Gigacycle Region of Loading. Mater. Today Proc. 2017, 4, 5979–5984. [Google Scholar]
- Beretta, S.; Murakami, Y. Largest-Extreme-Value Distribution Analysis of Multiple Inclusion Types in Determining Steel Cleanliness. Metall. Mater. Trans. 2001, 32B, 517–523. [Google Scholar] [CrossRef]
- Jonšta, P.; Jonšta, Z.; Brožová, S.; Ingaldi, M.; Pietraszek, J.; Klimecka-Tatar, D. The Effect of Rare Earth Metals Alloying on the Internal Quality of Industrially Produced Heavy Steel Forgings. Materials 2021, 14, 5160. [Google Scholar] [CrossRef]
- Lipiński, T.; Wach, A. Influence of outside furnace treatment on purity medium carbon steel. In Proceedings of the METAL 2014—23rd International Conference on Metallurgy and Materials, Brno, Czech Republic, 21–23 May 2014; pp. 738–743. [Google Scholar]
- Podorska, D.; Drożdż, P.; Falkus, J.; Wypartowicz, J. Calculations of oxide inclusions composition in the steel deoxidized with Mn, Si and Ti. Arch. Metall. Mater. 2006, 51, 581–586. [Google Scholar]
- Lipiński, T.; Wach, A. Dimensional Structure of Non-Metallic Inclusions in High-Grade Medium Carbon Steel Melted in an Electric Furnace and Subjected to Desulfurization. Solid State Phenom. 2015, 223, 46–53. [Google Scholar] [CrossRef]
- Hua, L.; Deng, S.; Han, X.; Huang, S. Effect of material defects on crack initiation under rolling contact fatigue in a bearing ring. Tribol. Int. 2013, 66, 315–323. [Google Scholar] [CrossRef]
- Gulyakov, V.S.; Vusikhis, A.S.; Kudinov, D.Z. Nonmetallic Oxide Inclusions and Oxygen in the Vacuum_Jet Refining of Steel. Steel Transl. 2012, 42, 781–783. [Google Scholar] [CrossRef]
- Murakami, Y.; Kodama, S.; Konuma, S. Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels, I: Basic fatigue mechanism and fatigue fracture stress and the size and location of non-metallic inclusions. Int. J. Fatigue 1989, 11, 291–298. [Google Scholar] [CrossRef]
- Srivastava, A.; Ponson, L.; Osovski, S.; Bouchaud, E.; Tvergaard, V.; Needleman, A. Effect of inclusion density on ductile fracture toughness and roughness. J. Mech. Phys. Solids 2014, 63, 62–79. [Google Scholar] [CrossRef]
- Yang, Z.G.; Zhang, J.M.; Li, S.X.; Li, G.Y.; Wang, Q.Y.; Hui, W.J.; Weng, Y.Q. On the critical inclusion size of high strength steels under ultra-high cycle fatigue. Mater. Sci. Eng. A 2006, 427, 167–174. [Google Scholar] [CrossRef]
- Lipiński, T. Effect of the spacing between submicroscopic oxide impurities on the fatigue strength of structural steel. Arch. Metall. Mater. 2015, 60, 2385–2390. [Google Scholar] [CrossRef]
- Qayyum, F.; Umar, M.; Elagin, V.; Kirschner, M.; Hoffmann, F.; Guk, S.; Prahl, U. Influence of non-metallic inclusions on local deformation and damage behavior of modified 16MnCrS5 steel. Crystals 2022, 12, 281. [Google Scholar] [CrossRef]
- Lipiński, T. The effect of the diameter and spacing between impurities on the fatigue strength coefficient of structural steel. Arch. Metall. Mater. 2018, 63, 519–524. [Google Scholar]
- Chan, K.S. Roles of microstructure in fatigue crack initiation. Int. J. Fatigue 2010, 32, 1428–1447. [Google Scholar] [CrossRef]
- Dobrzański, L.A. Heat treatment as the fundamental technological process of formation of structure and properties of the metallic engineering materials. In Proceedings of the 8th Seminar of the International Federation for Heat Treatment and Surface Engineering IFHTSE, Dubrovnik-Cavtat, Croatia, 12–14 September 2001; pp. 1–12. [Google Scholar]
- Macek, W.; Szala, M.; Trembacz, J.; Branco, R.; Costa, J. Effect of non-zero mean stress bending-torsion fatigue on fracture surface parameters of 34CrNiMo6 steel notched bars. Prod. Eng. Arch. 2020, 26, 167–173. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, Q.; Yang, J.; Xie, Z.; Zhang, L.; Liu, R.; Li, G.; Wang, H.; Fang, Q.; Wang, X. Microstructures and Tensile Properties of 9Cr-F/M Steel at Elevated Temperatures. Materials 2022, 15, 1248. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.M.; Paavola, J. Analysis of a cracked concrete containing an inclusion within homogeneously imperfect interface. Mech. Res. Commun. 2015, 63, 1–5. [Google Scholar] [CrossRef]
- Dong, Z.; Qian, D.; Yin, F.; Wang, F. Enhanced Impact Toughness of Previously Cold Rolled High-Carbon Chromium Bearing Steel with Rare Earth Addition. J. Mater. Eng. Perform. 2021, 30, 8178–8187. [Google Scholar] [CrossRef]
- Ossola, E.; Pagliassotto, S.; Rizzo, S.; Sesana, R. Microinclusion and Fatigue Performance of Bearing Rolling Elements. In Mechanical Fatigue of Metals: Experimental and Simulation Perspectives; Springer: Berlin/Heidelberg, Germany, 2019; Volume 7, pp. 321–326. [Google Scholar]
- Melander, A.; Rolfsson, M.; Nordgren, A.; Jansson, B.; Hedberg, H.; Lund, T. Influence of inclusion contents on fatigue properties of SAE-52100 bearing steels. Scand. J. Metall. 1991, 20, 229–244. [Google Scholar]
- Zhou, D.G.; Fu, J.; Chen, X.C.; Li, J. Study on oxygen content, inclusions and fatigue properties of bearing steels produced by different processes. J. Univ. Sci. Technol. Beijing 2001, 8, 25–27. [Google Scholar]
- Gu, C.; Liu, W.Q.; Lian, J.H.; Bao, Y.P. In-depth analysis of the fatigue mechanism induced by inclusions for high-strength bearing steels. Int. J. Miner. Metall. Mater. 2021, 28, 826–834. [Google Scholar] [CrossRef]
- Shi, Z.Y.; Li, J.J.; Zhang, X.D.; Shang, C.J.; Cao, W.Q. Influence Mechanisms of Inclusion Types on Rotating Bending Fatigue Properties of SAE52100 Bearing Steel. Materials 2022, 15, 5037. [Google Scholar] [CrossRef]
- Anderson, C.W.; Shi, G.; Atkinson, H.V.; Sellars, C.M. The precision of methods using the statistics of extremes for the estimation of the maximum size of inclusions in clean steels. Acta Mater. 2000, 48, 4235–4246. [Google Scholar] [CrossRef]
- Krynke, M. Management optimizing the costs and duration time of the process in the production system. Prod. Eng. Arch. 2021, 27, 163–170. [Google Scholar] [CrossRef]
- Guide engineer. Mechanic; Scientific and Technical Publishing: Warsaw, Poland, 1970. (In Polish) [Google Scholar]
- Lipiński, T.; Wach, A. Influence of inclusions on bending fatigue strength coefficient the medium carbon steel melted in an electric furnace. Prod. Eng. Arch. 2020, 26, 86–91. [Google Scholar] [CrossRef]
- PN-74/H-04327. Metals Testing for Fatigue. Axial Tensile-Compression Test at a Constant Cycle of External Loads. Polish Standards: Warsaw, Poland, 1974.
- Lipiński, T.; Wach, A. The Share of Non-Metallic Inclusions in High-Grade Steel for Machine Parts. Arch. Foundry Eng. 2010, 10, 45–48. [Google Scholar]
Chemical Element | C | Si | Mn | P | S | Cr | Ni | Mo | Cu | B |
---|---|---|---|---|---|---|---|---|---|---|
Contents | 0.23 | 0.28 | 1.12 | 0.02 | 0.01 | 0.47 | 0.47 | 0.23 | 0.15 | 0.003 |
Standard deviation | 0.017 | 0.047 | 0.123 | 0.004 | 0.004 | 0.058 | 0.040 | 0.016 | 0.014 | 0.001 |
Tempering Temperature, °C | 200 | 300 | 400 | 500 | 600 |
---|---|---|---|---|---|
Tensile strength, MPa | 1421 | 1347 | 1194 | 1073 | 887 |
Vickers hardness, HV | 432 | 412 | 372 | 333 | 275 |
Tempering Temperature, °C | 200 | 300 | 400 | 500 | 600 |
---|---|---|---|---|---|
Maximum load, MPa | 650 | 600 | 600 | 600 | 540 |
Statistical Parameter | Al2O3 | SiO2 | CaO | MgO | MnO | Cr2O3 | FeO |
---|---|---|---|---|---|---|---|
Arithmetic average | 39.5 | 13.4 | 10.4 | 9.7 | 9.5 | 9.0 | 8.7 |
Standard deviation | 2.021 | 1.437 | 1.470 | 0.962 | 0.215 | 1.174 | 3.057 |
Relative Volume of Non-Metallic Inclusions, V, for Diameters, d, µm | ||||
---|---|---|---|---|
Statistical parameter | V0 < 2 | V2 > 2 | V5 > 5 | V10 > 10 |
Arithmetic average relative volume of non-metallic inclusions, Vol. % | 0.077 | 0.100 | 0.080 | 0.046 |
Standard deviation | 0.0124 | 0.0321 | 0.0234 | 0.0139 |
Tempering Temperature °C | Correlation Coefficient r | Degree of Dissipation, k, Around Regression Line (7) | tα = 0.05 | tα = 0.05 from Student’s Distribution for p = (n − 1) |
---|---|---|---|---|
200 | 0.8736 | 0.1415 | 4.3972 | |
300 | 0.8668 | 0.0723 | 4.2579 | |
400 | 0.8773 | 0.1470 | 4.4775 | 2.4469 |
500 | 0.9354 | 0.0724 | 6.4800 | |
600 | 0.9139 | 0.0803 | 5.5146 | |
all | 0.8101 | 0.1360 | 8.0568 | 2.0452 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lipiński, T. Effect of Non-Metallic Inclusions on the Fatigue Strength Coefficient of High-Purity Constructional Steel Heated in Industrial Conditions. Appl. Sci. 2022, 12, 9292. https://doi.org/10.3390/app12189292
Lipiński T. Effect of Non-Metallic Inclusions on the Fatigue Strength Coefficient of High-Purity Constructional Steel Heated in Industrial Conditions. Applied Sciences. 2022; 12(18):9292. https://doi.org/10.3390/app12189292
Chicago/Turabian StyleLipiński, Tomasz. 2022. "Effect of Non-Metallic Inclusions on the Fatigue Strength Coefficient of High-Purity Constructional Steel Heated in Industrial Conditions" Applied Sciences 12, no. 18: 9292. https://doi.org/10.3390/app12189292
APA StyleLipiński, T. (2022). Effect of Non-Metallic Inclusions on the Fatigue Strength Coefficient of High-Purity Constructional Steel Heated in Industrial Conditions. Applied Sciences, 12(18), 9292. https://doi.org/10.3390/app12189292