Effect of Bio-Electrochemical Treatment of Hydroponic Effluent on the Nutrient Content
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Nitrogen and Phosphorus Removal
3.2. Use of Organic Compounds
3.3. pH and Electrolytic Conductivity
3.4. Impact of Treatment in a BER on the Concentration of Other Macro- and Micro Elements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gonnella, M.; Renna, M.; Fernández, J.A.; San Bautista, A. The Evolution of Soilless Systems towards Ecological Sustainability in the Perspective of a Circular Economy. Is It Really the Opposite of Organic Agriculture? Agronomy 2021, 11, 950. [Google Scholar] [CrossRef]
- Gullino, M.L.; Gilardi, G.; Garibaldi, A. Ready-to-Eat Salad Crops: A Plant Pathogen’s Heaven. Plant Dis. 2021, 103, 2153–2170. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Dong, L.; Kandel, S.L.; Jiao, Y.; Shi, L.; Yang, Y.; Shi, A.; Mou, B. Transcriptomic and Metabolomic Analysis Provides Insights into the Fruit Quality and Yield Improvement in Tomato under Soilless Substrate-Based Cultivation. Agronomy 2022, 12, 923. [Google Scholar] [CrossRef]
- Mohammed, S. Tomorrow’s Agriculture: “NFT Hydroponics”-Grow within Your Budget; Springer International Publishing: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Mielcarek, A.; Bryszewski, K.Ł.; Rodziewicz, J.; Janczukowicz, W. Single-Stage or Two-Stages Bio-Electrochemical Treatment Process of Drainage from Soilless Tomato Cultivation with Alternating Current. Sep. Purif. Technol. 2022, 299, 121762. [Google Scholar] [CrossRef]
- Dyśko, J.; Szczech, M.; Kaniszewski, S.; Kowalczyk, W. Parameters of Drainage Waters Collected during Soilless Tomato Cultivation in Mineral and Organic Substrates. Agronomy 2020, 10, 2009. [Google Scholar] [CrossRef]
- Regulation of the Minister of Infrastructure and Development of 23 September 2015 Amending the Regulation on the Manner of Fulfilling the Obligations of Industrial Wastewater Suppliers and the Conditions for Introducing Wastewater into Sewage Systems. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20150001456 (accessed on 25 August 2022).
- Regulation of the Minister of Maritime Economy and Inland Navigation of 12 July 2019 on Substances Particularly Harmful to the Aquatic Environment and Conditions to Be Met When Introducing Sewage into Waters or into the Ground, as Well as When Dischargin. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20190001311 (accessed on 25 August 2022).
- Richa, A.; Touil, S.; Fizir, M.; Martinez, V. Recent Advances and Perspectives in the Treatment of Hydroponic Wastewater: A Review. Rev. Environ. Sci. Biotechnol. 2020, 19, 945–966. [Google Scholar] [CrossRef]
- Tong, S.; Zhang, B.; Feng, C.; Zhao, Y.; Chen, N.; Hao, C.; Pu, J.; Zhao, L. Characteristics of Heterotrophic/Biofilm-Electrode Autotrophic Denitrification for Nitrate Removal from Groundwater. Bioresour. Technol. 2013, 148, 121–127. [Google Scholar] [CrossRef]
- Bryszewski, K.Ł.; Rodziewicz, J.; Mielcarek, A.; Janczukowicz, W.; Jóźwiakowski, K. Investigation on the Improved Electrochemical and Bio-Electrochemical Treatment Processes of Soilless Cultivation Drainage (SCD). Sci. Total Environ. 2021, 783, 146846. [Google Scholar] [CrossRef]
- Li, M.; Feng, C.; Zhang, Z.; Lei, X.; Chen, R.; Yang, Y.; Sugiura, N. Simultaneous Reduction of Nitrate and Oxidation of By-Products Using Electrochemical Method. J. Hazard. Mater. 2009, 171, 724–730. [Google Scholar] [CrossRef]
- Qiao, L.; Yuan, Y.; Mei, C.; Yin, W.; Zou, C.; Yin, Y.; Guo, Q.; Chen, T.; Ding, C. Reinforced Nitrite Supplement by Cathode Nitrate Reduction with a Bio-Electrochemical System Coupled Anammox Reactor. Environ. Res. 2022, 204, 112051. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.; Mao, R.; Shi, Y.; Lin, S.; Qiao, M.; Zhao, X. Removal of Phosphate in Secondary Effluent from Municipal Wastewater Treatment Plant by Iron and Aluminum Electrocoagulation: Efficiency and Mechanism. Sep. Purif. Technol. 2022, 286, 120439. [Google Scholar] [CrossRef]
- Mousazadeh, M.; Naghdali, Z.; Al-Qodah, Z.; Alizadeh, S.M.; Karamati Niaragh, E.; Malekmohammadi, S.; Nidheesh, P.; Roberts, E.P.L.; Sillanpää, M.; Mahdi Emamjomeh, M. A Systematic Diagnosis of State of the Art in the Use of Electrocoagulation as a Sustainable Technology for Pollutant Treatment: An Updated Review. Sustain. Energy Technol. Assess. 2021, 47, 101353. [Google Scholar] [CrossRef]
- Perera, M.K.; Englehardt, J.D.; Cohn, J.L.; Dauer, E.A.; Shukla, D. Electrohydromodulation for Phosphate Recovery from Wastewater. Sep. Purif. Technol. 2020, 247, 116909. [Google Scholar] [CrossRef]
- Rajaniemi, K.; Tuomikoski, S.; Lassi, U. Electrocoagulation Sludge Valorization—A Review. Resources 2021, 10, 127. [Google Scholar] [CrossRef]
- Shahedi, A.; Darban, A.K.; Taghipour, F.; Jamshidi-Zanjani, A. A Review on Industrial Wastewater Treatment via Electrocoagulation Processes. Curr. Opin. Electrochem. 2020, 22, 154–169. [Google Scholar] [CrossRef]
- Rodziewicz, J.; Mielcarek, A.; Janczukowicz, W.; Jóźwiak, T.; Struk-Sokołowska, J.; Bryszewski, K. The Share of Electrochemical Reduction, Hydrogenotrophic and Heterotrophic Denitrification in Nitrogen Removal in Rotating Electrobiological Contactor (REBC) Treating Wastewater from Soilless Cultivation Systems. Sci. Total Environ. 2019, 683, 21–28. [Google Scholar] [CrossRef]
- Bryszewski, K.; Rodziewicz, J.; Mielcarek, A. Usuwanie w Reaktorze Typu Sequencing Batch Biofilm Reactor (SBBR) Azotu i Fosforu Ze Ścieków Pochodzących z Bezglebowej Uprawy Pomidorów. Gaz Woda Tech. Sanit. 2018, 5, 26–28. [Google Scholar] [CrossRef]
- Kwon, M.J.; Hwang, Y.; Lee, J.; Ham, B.; Rahman, A.; Azam, H.; Yang, J.S. Waste Nutrient Solutions from Full-Scale Open Hydroponic Cultivation: Dynamics of Effluent Quality and Removal of Nitrogen and Phosphorus Using a Pilot-Scale Sequencing Batch Reactor. J. Environ. Manag. 2021, 281, 111893. [Google Scholar] [CrossRef]
- Tong, S.; Liu, H.; Feng, C.; Chen, N.; Zhao, Y.; Xu, B.; Zhao, J.; Zhu, M. Stimulation Impact of Electric Currents on Heterotrophic Denitrifying Microbial Viability and Denitrification Performance in High Concentration Nitrate-Contaminated Wastewater. J. Environ. Sci. 2019, 77, 363–371. [Google Scholar] [CrossRef]
- Liu, H.; Tong, S.; Chen, N.; Liu, Y.; Feng, C.; Hu, Q. Effect of Electro-Stimulation on Activity of Heterotrophic Denitrifying Bacteria and Denitrification Performance. Bioresour. Technol. 2015, 196, 123–128. [Google Scholar] [CrossRef]
- Liu, H.; Hu, Q.; Chen, N.; Feng, C. Effects of Trace Elements and Current Densities on Denitrification, Microbe Growth, ATP Generation and Enzyme Activity in a Bio-Electrochemical Reactor. Int. J. Electrochem. Sci. 2021, 16, 211243. [Google Scholar] [CrossRef]
- Chen, M.; Li, X.; Zhang, Q.; Wang, C.; Hu, H.; Wang, Q.; Zeng, C. Phosphate Removal from Aqueous Solution by Electrochemical Coupling Siderite Packed Column. Chemosphere 2021, 280, 130805. [Google Scholar] [CrossRef]
- Jóźwiak, T.; Mielcarek, A.; Janczukowicz, W.; Rodziewicz, J.; Majkowska-Gadomska, J.; Chojnowska, M. Hydrogel Chitosan Sorbent Application for Nutrient Removal from Soilless Plant Cultivation Wastewater. Environ. Sci. Pollut. Res. 2018, 25, 18484–18497. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Yao, S.; Liu, L.; Zhang, S.; Tang, X. Nitrate Removal from Groundwater by Heterotrophic and Electro-Autotrophic Denitrification. Water 2022, 14, 1759. [Google Scholar] [CrossRef]
- Farhadi, S.; Aminzadeh, B.; Torabian, A.; Khatibikamal, V.; Alizadeh Fard, M. Comparison of COD Removal from Pharmaceutical Wastewater by Electrocoagulation, Photoelectrocoagulation, Peroxi-Electrocoagulation and Peroxi-Photoelectrocoagulation Processes. J. Hazard. Mater. 2012, 219–220, 35–42. [Google Scholar] [CrossRef]
- Mook, W.T.; Aroua, M.K.; Issabayeva, G. Prospective Applications of Renewable Energy Based Electrochemical Systems in Wastewater Treatment: A Review. Renew. Sustain. Energy Rev. 2014, 38, 36–46. [Google Scholar] [CrossRef]
- Alam, R.; Sheob, M.; Saeed, B.; Khan, S.U.; Shirinkar, M.; Frontistis, Z.; Basheer, F.; Farooqi, I.H. Use of Electrocoagulation for Treatment of Pharmaceutical Compounds in Water/Wastewater: A Review Exploring Opportunities and Challenges. Water 2021, 13, 2105. [Google Scholar] [CrossRef]
- Wang, Y.; Kuntke, P.; Saakes, M.; van der Weijden, R.D.; Buisman, C.J.N.; Lei, Y. Electrochemically Mediated Precipitation of Phosphate Minerals for Phosphorus Removal and Recovery: Progress and Perspective. Water Res. 2022, 209, 117891. [Google Scholar] [CrossRef]
- Lei, Y.; Song, B.; van der Weijden, R.D.; Saakes, M.; Buisman, C.J.N. Electrochemical Induced Calcium Phosphate Precipitation: Importance of Local PH. Environ. Sci. Technol. 2017, 51, 11156–11164. [Google Scholar] [CrossRef]
- PN-EN 10020:2003; Definition and Classification of Grades of Steel. Polish Committee for Standardization: Warsaw, Poland, 2013. (In Polish)
- Yadav, A.K.; Singh, L.; Mohanty, A.; Satya, S.; Sreekrishnan, T.R. Removal of Various Pollutants from Wastewater by Electrocoagulation Using Iron and Aluminium Electrode. Desalination Water Treat. 2012, 46, 352–358. [Google Scholar] [CrossRef]
- Igwegbe, C.A.; Onukwuli, O.D.; Ighalo, J.O.; Umembamalu, C.J. Electrocoagulation-Flocculation of Aquaculture Effluent Using Hybrid Iron and Aluminium Electrodes: A Comparative Study. Chem. Eng. J. Adv. 2021, 6, 100107. [Google Scholar] [CrossRef]
- Kadier, A.; Hao, B.; Li, H.; Ma, P.-C.; Wang, J.-Y. Performance Optimization of a Batch Scale Electrocoagulation Process Using Stainless Steel Mesh (304) Cathode for the Separation of Oil-in-Water Emulsion Microbial Fuel Cell with a Cathodic Microalgae Biofilm with Dye Textile Wastewater View Project Biohydrogen Production View Project Performance Optimization of a Batch Scale Electrocoagulation Process Using Stainless Steel Mesh (304) Cathode for the Separation of Oil-in-Water Emulsion. Chem. Eng. Process. Process Intensif. 2022, 174, 108901. [Google Scholar] [CrossRef]
- Islam, S.M.D.-U. Electrocoagulation (EC) Technology for Wastewater Treatment and Pollutants Removal. Sustain. Water Resour. Manag. 2019, 5, 359–380. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, X.; Wang, S.; Gomez, M.A.; Yao, S.; Jia, Y. The Effects of PH, Neutralizing Reagent and Co-Ions on Mo(VI) Removal and Speciation in Fe(III)–Mo(VI) Coprecipitation Process. Appl. Geochem. 2021, 134, 105091. [Google Scholar] [CrossRef]
- Saxena, P.; Bassi, A. Removal of Nutrients from Hydroponic Greenhouse Effluent by Alkali Precipitation and Algae Cultivation Method. J. Chem. Technol. Biotechnol. 2013, 88, 858–863. [Google Scholar] [CrossRef]
- Delrue, F.; de Cerqueira, M.R.J.; Compadre, A.; Alvarez, P.; Fleury, G.; Escoffier, C.; Sassi, J.F. Hydroponic Farm Wastewater Treatment Using an Indigenous Consortium. Processes 2021, 9, 519. [Google Scholar] [CrossRef]
- Al-Yaqoobi, A.M.; Al-Rikabey, M.N.; Algharrawi, K.H.R. Treatment of Dairy Wastewater by Electrocoagulation and Ultrasonic-Assisted Electrocoagulation Methods. Environ. Eng. Manag. J. 2021, 20, 949–957. [Google Scholar] [CrossRef]
- Liang, Z.; Sun, J.; Zhan, C.; Wu, S.; Zhang, L.; Jiang, F. Effects of Sulfide on Mixotrophic Denitrification by: Thauera-Dominated Denitrifying Sludge. Environ. Sci. 2020, 6, 1186–1195. [Google Scholar] [CrossRef]
- Ngobeni, P.V.; Basitere, M.; Thole, A. Treatment of Poultry Slaughterhouse Wastewater Using Electrocoagulation: A Review. Water Pract. Technol. 2022, 17, 38–59. [Google Scholar] [CrossRef]
- Yang, Z.H.; Xu, H.Y.; Zeng, G.M.; Luo, Y.L.; Yang, X.; Huang, J.; Wang, L.K.; Song, P.P. The Behavior of Dissolution/Passivation and the Transformation of Passive Films during Electrocoagulation: Influences of Initial PH, Cr(VI) Concentration, and Alternating Pulsed Current. Electrochim. Acta 2015, 153, 149–158. [Google Scholar] [CrossRef]
Chemical Element | Mean Value with Standard Deviation | Maximum Permissible Values of Pollutants for Biodegradable Industrial Wastewater Generated during the Production and Processing of Fruit and Vegetables Discharged into Water or Ground | Permissible Values of Pollution Indicators in Industrial Wastewater Introduced into Sewage System |
---|---|---|---|
Mo6+ | 2.87 ± 0.17 mg Mo6+/L | 1 | 1 |
Mn2+ | 0.738 ± 0.109 mg Mn2+/L | - | - |
B2+ | 1.75 ± 0.06 mg B2+/L | 1 | 10 |
Cu2+ | 0.130 ± 0.019 mg Cu2+/L | 0.5 | 1 |
Zn2+ | 1.65 ± 0.26 mg Zn2+/L | 2 | 5 |
K+ | 1276.9 ± 96.7 mg K+/L | 80 | - |
SO42− | 1425.0 ± 102.6 mg SO42−/L | 500 | 500 |
Cl− | 91.8 ± 6.1 mg Cl−/L | 1000 | 1000 |
Al3+ | <0.02 mg Al3+/L | 3 | 3 |
Fetot. | 0.127 ± 0.006 mg Fetot./L | 10 | 10 |
Ca2+ | 797.0 ± 3.6 mg Ca2+/L | - | - |
Mg2+ | 181.1 ± 3.4 mg Mg2+/L | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bryszewski, K.Ł.; Rodziewicz, J.; Janczukowicz, W. Effect of Bio-Electrochemical Treatment of Hydroponic Effluent on the Nutrient Content. Appl. Sci. 2022, 12, 9540. https://doi.org/10.3390/app12199540
Bryszewski KŁ, Rodziewicz J, Janczukowicz W. Effect of Bio-Electrochemical Treatment of Hydroponic Effluent on the Nutrient Content. Applied Sciences. 2022; 12(19):9540. https://doi.org/10.3390/app12199540
Chicago/Turabian StyleBryszewski, Kamil Łukasz, Joanna Rodziewicz, and Wojciech Janczukowicz. 2022. "Effect of Bio-Electrochemical Treatment of Hydroponic Effluent on the Nutrient Content" Applied Sciences 12, no. 19: 9540. https://doi.org/10.3390/app12199540
APA StyleBryszewski, K. Ł., Rodziewicz, J., & Janczukowicz, W. (2022). Effect of Bio-Electrochemical Treatment of Hydroponic Effluent on the Nutrient Content. Applied Sciences, 12(19), 9540. https://doi.org/10.3390/app12199540