A ML-Based Wind Speed Prediction Model with Truncated Real-Time Decomposition and Multi-Resolution Data
Abstract
:1. Introduction
2. Methodology
2.1. SSA
2.2. GRU
2.3. Schemes of Real-Time Decomposition
2.4. SSA-TRTD-MR-GRU
3. Data Description and Decomposition
3.1. Data Description
3.2. Data Decomposition
4. Experimental Results and Analysis
4.1. Evaluation Metrics
4.2. Experimental Results
4.3. Analysis I: The Performance of Data Decomposition
4.4. Analysis II: The Performance of the Proposed Scheme of Real-Time Decomposition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, S.R.; Cai, C.S. Accident assessment of vehicles on long-span bridges in windy environments. J. Wind. Eng. Ind. Aerodyn. 2004, 92, 991–1024. [Google Scholar] [CrossRef]
- Wang, H.; Mao, J.-X.; Spencer, B.F. A monitoring-based approach for evaluating dynamic responses of riding vehicle on long-span bridge under strong winds. Eng. Struct. 2019, 189, 35–47. [Google Scholar] [CrossRef]
- de Oliveira, C.C.; Carvalho, H.; Verga Mendes, V.R.; Correia, J.A.F.; de Oliveira Correia, J.A.F.; Fazeres-Ferradosa, T. Nonlinear dynamic analysis of transmission line cables under synoptic wind loads. Pract. Period. Struct. Des. Constr. 2020, 25, 04020035. [Google Scholar] [CrossRef]
- Cai, H.; Jia, X.; Feng, J.; Li, W.; Hsu, Y.-M.; Lee, J. Gaussian process regression for numerical wind speed prediction enhancement. Renew. Energy 2020, 146, 2112–2123. [Google Scholar] [CrossRef]
- Cai, H.; Jia, X.; Feng, J.; Yang, Q.; Hsu, Y.-M.; Chen, Y.; Lee, J. A combined filtering strategy for short term and long term wind speed prediction with improved accuracy. Renew. Energy 2019, 136, 1082–1090. [Google Scholar] [CrossRef]
- Sweeney, C.P.; Lynch, P.; Nolan, P. Reducing errors of wind speed forecasts by an optimal combination of post-processing methods: Comparing and combining post-processing methods. Met. Apps 2013, 20, 32–40. [Google Scholar] [CrossRef]
- Torres, J.L.; García, A.; De Blas, M.; De Francisco, A. Forecast of hourly average wind speed with ARMA models in Navarre (Spain). Sol. Energy 2005, 79, 65–77. [Google Scholar] [CrossRef]
- Kavasseri, R.G.; Seetharaman, K. Day-ahead wind speed forecasting using f-ARIMA models. Renew. Energy 2009, 34, 1388–1393. [Google Scholar] [CrossRef]
- Chen, K.; Yu, J. Short-term wind speed prediction using an unscented kalman filter based state-space support vector regression approach. Appl. Energy 2014, 113, 690–705. [Google Scholar] [CrossRef]
- Velo, R.; López, P.; Maseda, F. Wind speed estimation using multilayer perceptron. Energy Convers. Manag. 2014, 81, 1–9. [Google Scholar] [CrossRef]
- Luo, X.; Sun, J.; Wang, L.; Wang, W.; Zhao, W.; Wu, J.; Wang, J.-H.; Zhang, Z. Short-term wind speed forecasting via stacked extreme learning machine with generalized correntropy. IEEE Trans. Ind. Inf. 2018, 14, 4963–4971. [Google Scholar] [CrossRef]
- Zhang, Z.; Qin, H.; Liu, Y.; Wang, Y.; Yao, L.; Li, Q.; Li, J.; Pei, S. Long short-term memory network based on neighborhood gates for processing complex causality in wind speed prediction. Energy Convers. Manag. 2019, 192, 37–51. [Google Scholar] [CrossRef]
- Yu, E.; Xu, G.; Han, Y.; Li, Y. An efficient short-term wind speed prediction model based on cross-channel data integration and attention mechanisms. Energy 2022, 256, 124569. [Google Scholar] [CrossRef]
- Yang, R.; Liu, H.; Nikitas, N.; Duan, Z.; Li, Y.; Li, Y. Short-term wind speed forecasting using deep reinforcement learning with improved multiple error correction approach. Energy 2022, 239, 122128. [Google Scholar] [CrossRef]
- Liu, H.; Tian, H.; Li, Y. An EMD-recursive ARIMA method to predict wind speed for railway strong wind warning system. J. Wind. Eng. Ind. Aerodyn. 2015, 141, 27–38. [Google Scholar] [CrossRef]
- Yu, C.; Li, Y.; Xiang, H.; Zhang, M. Data mining-assisted short-term wind speed forecasting by wavelet packet decomposition and elman neural network. J. Wind. Eng. Ind. Aerodyn. 2018, 175, 136–143. [Google Scholar] [CrossRef]
- Liu, H.; Mi, X.; Li, Y.; Duan, Z.; Xu, Y. Smart wind speed deep learning based multi-step forecasting model using singular spectrum analysis, convolutional gated recurrent unit network and support vector regression. Renew. Energy 2019, 143, 842–854. [Google Scholar] [CrossRef]
- Jiajun, H.; Chuanjin, Y.; Yongle, L.; Huoyue, X. Ultra-short term wind prediction with wavelet transform, deep belief network and ensemble learning. Energy Convers. Manag. 2020, 205, 112418. [Google Scholar] [CrossRef]
- Hu, H.; Wang, L.; Tao, R. Wind speed forecasting based on variational mode decomposition and improved echo state network. Renew. Energy 2021, 164, 729–751. [Google Scholar] [CrossRef]
- Qu, Z.; Mao, W.; Zhang, K.; Zhang, W.; Li, Z. Multi-step wind speed forecasting based on a hybrid decomposition technique and an improved back-propagation neural network. Renew. Energy 2019, 133, 919–929. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, B.; Pan, G.; Zhao, Y. A novel hybrid model based on VMD-WT and PCA-BP-RBF neural network for short-term wind speed forecasting. Energy Convers. Manag. 2019, 195, 180–197. [Google Scholar] [CrossRef]
- Sun, W.; Wang, Y. Short-term wind speed forecasting based on fast ensemble empirical mode decomposition, phase space reconstruction, sample entropy and improved back-propagation neural network. Energy Convers. Manag. 2018, 157, 1–12. [Google Scholar] [CrossRef]
- Chen, G.; Tang, B.; Zeng, X.; Zhou, P.; Kang, P.; Long, H. Short-term wind speed forecasting based on long short-term memory and improved BP neural network. Int. J. Electr. Power Energy Syst. 2022, 134, 107365. [Google Scholar] [CrossRef]
- Hu, J.; Heng, J.; Wen, J.; Zhao, W. Deterministic and probabilistic wind speed forecasting with de-noising-reconstruction strategy and quantile regression based algorithm. Renew. Energy 2020, 162, 1208–1226. [Google Scholar] [CrossRef]
- Huang, X.; Wang, J.; Huang, B. Two novel hybrid linear and nonlinear models for wind speed forecasting. Energy Convers. Manag. 2021, 238, 114162. [Google Scholar] [CrossRef]
- Peng, Z.; Peng, S.; Fu, L.; Lu, B.; Tang, J.; Wang, K.; Li, W. A novel deep learning ensemble model with data denoising for short-term wind speed forecasting. Energy Convers. Manag. 2020, 207, 112524. [Google Scholar] [CrossRef]
- Tian, Z. Modes decomposition forecasting approach for ultra-short-term wind speed. Appl. Soft Comput. 2021, 105, 107303. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, N.; Lu, H. A novel system based on neural networks with linear combination framework for wind speed forecasting. Energy Convers. Manag. 2019, 181, 425–442. [Google Scholar] [CrossRef]
- Qian, Z.; Pei, Y.; Zareipour, H.; Chen, N. A review and discussion of decomposition-based hybrid models for wind energy forecasting applications. Appl. Energy 2019, 235, 939–953. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, G.; Peng, X.; Li, Y.; Yang, Q. A novel wind speed prediction method: Hybrid of correlation-aided DWT, LSSVM and GARCH. J. Wind. Eng. Ind. Aerodyn. 2018, 174, 28–38. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, L. On practical challenges of decomposition-based hybrid forecasting algorithms for wind speed and solar irradiation. Energy 2016, 112, 208–220. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, B.; Lu, Z. A hybrid model based on data preprocessing strategy and error correction system for wind speed forecasting. Energy Convers. Manag. 2020, 212, 112779. [Google Scholar] [CrossRef]
- Liu, L.; Wang, J. Super multi-step wind speed forecasting system with training set extension and horizontal–vertical integration neural network. Appl. Energy 2021, 292, 116908. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Srinivasan, D.; Hu, Q. Robust functional regression for wind speed forecasting based on Sparse Bayesian learning. Renew. Energy 2019, 132, 43–60. [Google Scholar] [CrossRef]
- Yang, W.; Tian, Z.; Hao, Y. A novel ensemble model based on artificial intelligence and mixed-frequency techniques for wind speed forecasting. Energy Convers. Manag. 2022, 252, 115086. [Google Scholar] [CrossRef]
- Duarte, F.S.L.G.; Rios, R.A.; Hruschka, E.R.; de Mello, R.F. Decomposing time series into deterministic and stochastic influences: A survey. Digit. Signal Process. 2019, 95, 102582. [Google Scholar] [CrossRef]
- Vautard, R.; Yiou, P.; Ghil, M. Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Phys. D Nonlinear Phenom. 1992, 58, 95–126. [Google Scholar] [CrossRef]
- Golyandina, N.; Zhigljavsky, A. Singular Spectrum Analysis for Time Series; SpringerBriefs in Statistics; Springer: Berlin/Heidelberg, Germany, 2020; ISBN 978-3-662-62435-7. [Google Scholar]
- Leles, M.C.R.; Sansão, J.P.H.; Mozelli, L.A.; Guimarães, H.N. Improving reconstruction of time-series based in singular spectrum analysis: A segmentation approach. Digit. Signal Process. 2018, 77, 63–76. [Google Scholar] [CrossRef]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar]
- Graves, A.; Jaitly, N. Towards end-to-end speech recognition with recurrent neural networks. In Proceedings of the 31st International Conference on Machine Learning, Beijing, China, 21–26 June 2014; p. 9. [Google Scholar]
- Wei, D.; Wang, J.; Niu, X.; Li, Z. Wind speed forecasting system based on gated recurrent units and convolutional spiking neural networks. Appl. Energy 2021, 292, 116842. [Google Scholar] [CrossRef]
- Xiong, D.; Fu, W.; Wang, K.; Fang, P.; Chen, T.; Zou, F. A blended approach incorporating TVFEMD, PSR, NNCT-based multi-model fusion and hierarchy-based merged optimization algorithm for multi-step wind speed prediction. Energy Convers. Manag. 2021, 230, 113680. [Google Scholar] [CrossRef]
- Huang, G.-B.; Zhou, H.; Ding, X.; Zhang, R. Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. B 2012, 42, 513–529. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.-B.; Wang, D.H.; Lan, Y. Extreme learning machines: A survey. Int. J. Mach. Learn. Cyber. 2011, 2, 107–122. [Google Scholar] [CrossRef]
- Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 30 June 2016; pp. 770–778. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
Ref | Method | Real-Time Decomposition | Multi-Resolution Data |
---|---|---|---|
[15] | EMD + ARIMA | No | No |
[16] | WPD + ENN | No | No |
[17] | SSA + CNNGRU + SVR | No | No |
[20] | CEEMDAN + EWT + NN | No | No |
[21] | VMD + WT + RBF | No | No |
[24] | MCEEMDAN + QRNN | No | No |
[25] | CEEMD + ARMA + BPNN | No | No |
[26] | WTD + GRU | No | No |
[27] | VMD + SVM + LSTM | No | No |
[28] | VMD + RBF | No | No |
[31] | EMD + SVM | Basic real-time decomposition | No |
[32] | EWT + ENN | Quasi real-time decomposition | No |
[33] | SSA + BiLSTM | Truncated real-time decomposition | No |
[34] | Functional regression | No | Yes |
[35] | ICEEMDAN | No | Yes |
Proposed | SSA + GRU | Truncated real-time decomposition | Yes |
Dataset | Maximum (m/s) | Mean (m/s) | Minimum (m/s) | Standard Deviation (m/s) | Skewness | Kurtosis |
---|---|---|---|---|---|---|
A2018 | 18.04 | 5.21 | 0.38 | 3.21 | 2.96 | 0.70 |
B2019 | 12.14 | 3.38 | 0.27 | 2.12 | 3.47 | 0.95 |
Model | Definition |
---|---|
PM | Persistence model |
ARIMA | Autoregression integrated moving average model |
ELM | Extreme learning machine |
CNN | Convolution neural network |
GRU | Gated recurrent unit neural network |
SSA-BRTD-GRU | GRU with basic real-time decomposition |
SSA-QRTD-GRU | GRU with quasi real-time decomposition |
SSA-TRTD-GRU | GRU with truncated real-time decomposition |
SSA-TRTD-MR-GRU | The proposed model: GRU with real-time decomposition and multi-resolution data |
A2018 | B2019 | |||
---|---|---|---|---|
MAE (m/s) | RMSE (m/s) | MAE (m/s) | RMSE (m/s) | |
PM | 0.503 | 0.676 | 0.310 | 0.434 |
ARIMA | 0.501 | 0.670 | 0.308 | 0.429 |
ELM | 0.501 | 0.669 | 0.309 | 0.431 |
CNN | 0.499 | 0.669 | 0.309 | 0.429 |
GRU | 0.499 | 0.667 | 0.307 | 0.428 |
SSA-BRTD-GRU | 0.391 | 0.518 | 0.270 | 0.364 |
SSA-QRTD-GRU | 0.372 | 0.494 | 0.261 | 0.353 |
SSA-TRTD-GRU | 0.431 | 0.567 | 0.306 | 0.413 |
SSA-TRTD-MR-GRU | 0.334 | 0.445 | 0.233 | 0.316 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, H.; Jin, Y.; Laima, S.; Han, F.; Xu, W.; Liu, Z. A ML-Based Wind Speed Prediction Model with Truncated Real-Time Decomposition and Multi-Resolution Data. Appl. Sci. 2022, 12, 9610. https://doi.org/10.3390/app12199610
Feng H, Jin Y, Laima S, Han F, Xu W, Liu Z. A ML-Based Wind Speed Prediction Model with Truncated Real-Time Decomposition and Multi-Resolution Data. Applied Sciences. 2022; 12(19):9610. https://doi.org/10.3390/app12199610
Chicago/Turabian StyleFeng, Hui, Yao Jin, Shujin Laima, Feiyang Han, Wengchen Xu, and Zhiqiang Liu. 2022. "A ML-Based Wind Speed Prediction Model with Truncated Real-Time Decomposition and Multi-Resolution Data" Applied Sciences 12, no. 19: 9610. https://doi.org/10.3390/app12199610
APA StyleFeng, H., Jin, Y., Laima, S., Han, F., Xu, W., & Liu, Z. (2022). A ML-Based Wind Speed Prediction Model with Truncated Real-Time Decomposition and Multi-Resolution Data. Applied Sciences, 12(19), 9610. https://doi.org/10.3390/app12199610