Reconstruction of Land and Marine Features by Seismic and Surface Geomorphology Techniques
Abstract
:1. Introduction
- Understanding the development of seascapes and landscapes in clastic and carbonate settings;
- Advances in workflows directed toward lithological prediction through the integration of seismic stratigraphy and seismic geomorphology;
- Revising and improving sequence stratigraphic models;
- Development of new and increasingly sophisticated analytical techniques.
- Height, defined as the vertical distance within a sediment conduit from its base to spill point;
- Top width, defined as the horizontal distance between two spill points;
- Base width, defined as the horizontal distance between two points in its floor;
- Cross-sectional area (CSA), defined as the area of a sediment conduit perpendicular to its axis;
- Aspect ratio, defined as the ratio between width and height of the sediment conduit’s CSA;
- Sinuosity, defined as the ratio between a reference point and the sediment conduit’s axis;
- Gradient, calculated from depth changes along the sediment conduit.
2. Review Method and Protocol
- Planning the review: identifying why this review paper is needed and identification of research questions.
- Conducting the review: selection of primary research, data extraction, and result reporting.
- R.Q.1 What is the meaning of seismic geomorphology?
- R.Q.2 What are the available seismic geomorphology techniques?
- R.Q.3 How is the integration of seismic and surface geomorphology techniques accomplished?
- R.Q.4 Which technique is most often used and which approach gives better results?
- Research paper is published in peer-reviewed and good journal, represented in major indices with high impact factor.
- Research paper is accessible.
- Research paper has relevant content to seismic geomorphology and surface geomorphology techniques.
- Research paper is published in non-peer-reviewed journal.
- Research paper is inaccessible.
- Research paper has no relevant content to seismic geomorphology and surface geomorphology techniques.
3. Seismic Attributes
- (1)
- Amplitude (reflection strength, RMS amplitude, etc.), waveshape (apparent polarity and maximum peak amplitude), frequency (instantaneous frequency and average zero crossing), attenuation (amplitude slope and attenuation of sensitive bandwidth), phase (instantaneous phase and response phase), correlation (length and average), energy (reflection strength and vibration energy), and ratios (ratio of adjacent peak amplitudes).
- (2)
- Bright and dim spots (slope of reflection strength), unconformity traps (average correlation), oil and gas bearing anomalies (instantaneous real amplitude), thin layer reservoirs (finite frequency–bandwidth energy), stratigraphic discontinuity (apparent polarity), clastic–carbonate differentiation (ratio of adjacent peak amplitudes), structural discontinuity (maximum–minimum correlation), and lithology pinch-out (cosine of instantaneous phase).
4. Seismic Sedimentology
- Shale with medium-porosity gas sand.
- Shale with low-porosity gas sand.
- Gas sand and wet sand.
- Wet sand and shale.
- Good quality geologic-time framework should be in place.
- Depositional system should be linear with lateral changes in thickness.
- No significant angular unconformity.
5. Volume Rendering and Geobody Extractions
- Red for lower values (less significant geological features).
- Green for intermediate values that represent geological features.
- Blue for higher values that represent more geological features.
6. Machine Learning
7. Integrated Seismic Geomorphology with Surface Geomorphological Techniques
8. Discussions and Results Overview
9. Conclusions
- Seismic geomorphology is a subsurface (including near surface) study that extracts geomorphology features out of 3D seismic reflection data.
- Active proxy of surface geomorphology techniques and remote sensing techniques have huge potential in vertical and horizontal deformation monitoring.
- The reconstruction of high-resolution images of land and marine surface features by surface and subsurface geomorphology techniques is reliable through several techniques, including seismic sedimentology, volume rendering, geobody extraction, quantitative geomorphology approaches, and mapping.
- The integration of surface and subsurface techniques provides more realistic and suitable 3D models of the earth and its geomorphology. In addition, it enhances the interpretation of sedimentary processes, geomorphology, the earth’s surface, the paleoenvironment, economical prospective, natural hazards, etc. Therefore, we propose a workflow that integrates surface and subsurface techniques to provide realistic and acceptable earth models.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chopra, S.; Marfurt, K.J. Evolution of seismic interpretation during the last three decades. Lead. Edge 2012, 31, 654–676. [Google Scholar] [CrossRef]
- Doust, H. The exploration play: What do we mean by it? AAPG Bull. 2010, 94, 1657–1672. [Google Scholar] [CrossRef]
- Weimer, P.; Slatt, R.M.; Bouroullec, R.; Fillon, R.; Pettingill, H.; Pranter, M.; Tari, G. Reservoir Quality of Deepwater Deposits. In Introduction to the Petroleum Geology of Deepwater Setting; American Association of Petroleum Geologists: Tulsa, Ok, USA, 2006; Volume 57. [Google Scholar]
- Harishidayat, D.; Taufani, L.; Fardiansyah, I.; Wibowo, A. Integrated Digital Outcrop Model (DOM) and Seismic Forward Modeling: Application to Enhance Subsurface Interpretation in Deltaic System of Kutai Basin, East Kalimantan. Indones. Pet. Assoc. 2017. [Google Scholar] [CrossRef]
- Grammer, G.M.; Harris, P.M.M.; Eberli, G.P. Integration of Outcrop and Modern Analogs in Reservoir Modeling; American Association of Petroleum Geologists: Tulsa, Ok, USA, 2004. [Google Scholar]
- Sullivan, M.D.; Foreman, J.L.; Jennette, D.C.; Stern, D.; Jensen, G.N.; Goulding, F.J.; Grammer, G.M.; Harris, P.M.M.; Eberli, G.P. An Integrated Approach to Characterization and Modeling of Deep-water Reservoirs, Diana Field, Western Gulf of Mexico. In Integration of Outcrop and Modern Analogs in Reservoir Modeling; American Association of Petroleum Geologists: Tulsa, Ok, USA, 2004. [Google Scholar]
- Gluyas, J.; Swarbrick, R. Petroleum Geoscience; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Harishidayat, D. Architecture, Morphometry and Development of Subaqueous Sediment Conduits; Norwegian University of Science and Technology: Trondheim, Norway, 2021. [Google Scholar]
- Kemper, M.; Abel, M.; De Ros, L.; Hansford, J. Integration of Lithological Data for Advanced Seismic Inversion. In Third EAGE/SBGf Workshop 2016; European Association of Geoscientists & Engineers: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Sams, M.; Millar, I.; Satriawan, W.; Saussus, D.; Bhattacharyya, S. Integration of geology and geophysics through geostatistical inversion: A case study. First Break 2011, 29, 47–56. [Google Scholar] [CrossRef]
- Brown, A.R. Interpretation of Three-Dimensional Seismic Data, 7th ed.; Society of Exploration Geophysicists: Houston, TX, USA; The American Association of Petroleum Geologists: Tulsa, Ok, USA, 2011. [Google Scholar]
- Cartwright, J.; Huuse, M. 3D seismic technology: The geological ‘Hubble’. Basin Res. 2005, 17, 1–20. [Google Scholar] [CrossRef]
- Davies, R.J.; Posamentier, H.W. Geologic processes in sedimentary basins inferred from three-dimensional seismic imaging. GSA Today 2005, 15, 4. [Google Scholar] [CrossRef]
- Herron, D.A. First Steps in Seismic Interpretation; Society of Exploration Geophysicists: Houston, TX, USA, 2011. [Google Scholar]
- Posamentier, H.W.; Paumard, V.; Lang, S.C. Principles of seismic stratigraphy and seismic geomorphology I: Extracting geologic insights from seismic data. Earth-Sci. Rev. 2022, 228, 103963. [Google Scholar] [CrossRef]
- Avseth, P.; Mukerji, T.; Mavko, G. Quantitative Seismic Interpretation: Applying Rock Physics Tools to Reduce Interpretation Risk; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Cox, D.R.; Newton, A.M.; Huuse, M. An introduction to seismic reflection data: Acquisition, processing and interpretation. In Regional Geology and Tectonics; Elsevier: Amsterdam, The Netherlands, 2020; pp. 571–603. [Google Scholar]
- Badley, M. Advanced Practical Seismic Interpretation; IHRDC Press: Boston, MA, USA, 1992. [Google Scholar]
- Badley, M.E. Practical Seismic Interpretation; IHRDC Press: Boston, MA, USA, 1985. [Google Scholar]
- Davies, R.J.; Posamentier, H.W.; Wood, L.J.; Cartwright, J.A. Seismic Geomorphology: Applications to Hydrocarbon Exploration and Production; GSL Special Publications: London, UK, 2006; p. 276. [Google Scholar]
- Dvorkin, J.; Gutierrez, M.A.; Grana, D. Seismic Reflections of Rock Properties; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Schultz, P. The Seismic Velocity Model as an Interpretation Asset; Society of Exploration Geophysicists: Houston, TX, USA, 1998. [Google Scholar]
- Sheriff, R.E.; Geldart, L.P. Exploration Seismology; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Omosanya, K.O.; Harishidayat, D. Seismic geomorphology of Cenozoic slope deposits and deltaic clinoforms in the Great South Basin (GSB) offshore New Zealand. Geo-Mar. Lett. 2019, 39, 77–99. [Google Scholar] [CrossRef]
- Harishidayat, D.; Johansen, S.E.; Batchelor, C.; Omosanya, K.O.; Ottaviani, L. Pliocene–Pleistocene glacimarine shelf to slope processes in the south-western Barents Sea. Basin Res. 2021, 33, 1315–1336. [Google Scholar] [CrossRef]
- Harishidayat, D.; Omosanya, K.O.; Johansen, S.E. 3D seismic interpretation of the depositional morphology of the Middle to Late Triassic fluvial system in Eastern Hammerfest Basin, Barents Sea. Mar. Pet. Geol. 2015, 68, 470–479. [Google Scholar] [CrossRef]
- Posamentier, H.W. Seismic Geomorphology: Imaging Elements of Depositional Systems from Shelf to Deep Basin Using 3D Seismic Data: Implications for Exploration and Development. Geol. Soc. Lond. Mem. 2004, 29, 11–24. [Google Scholar] [CrossRef]
- Posamentier, H.W. Application of 3D seismic visualization techniques for seismic stratigraphy, seismic geomorphology and depositional systems analysis: Examples from fluvial to deep-marine depositional environments. Geol. Soc. Lond. Pet. Geol. Conf. Ser. 2005, 6, 1565–1576. [Google Scholar] [CrossRef]
- Posamentier, H.W.; Davies, R.J.; Cartwright, J.A.; Wood, L. Seismic geomorphology–An overview. Geol. Soc. Lond. Spec. Publ. 2007, 277, 1–14. [Google Scholar] [CrossRef]
- Harishidayat, D.; Farouk, S.; Abioui, M.; Aziz, O.A. Subsurface Fluid Flow Feature as Hydrocarbon Indicator in the Alamein Basin, Onshore Egypt; Seismic Attribute Perspective. Energies 2022, 15, 3048. [Google Scholar] [CrossRef]
- Harishidayat, D.; Emmel, B.U.; De Jager, G.; Johansen, S.E. Assessment of continental margin clinoform systems in the Sørvestsnaget Basin, western Barents Sea: From clinoform parameters towards paleo-water depth. Mar. Geophys. Res. 2022, 43, 22. [Google Scholar] [CrossRef]
- Alfaro, E.; Holz, M. Seismic geomorphological analysis of deepwater gravity-driven deposits on a slope system of the southern Colombian Caribbean margin. Mar. Pet. Geol. 2014, 57, 294–311. [Google Scholar] [CrossRef]
- Bourget, J.; Ainsworth, R.B.; Thompson, S. Seismic stratigraphy and geomorphology of a tide or wave dominated shelf-edge delta (NW Australia): Process-based classification from 3D seismic attributes and implications for the prediction of deep-water sands. Mar. Pet. Geol. 2014, 57, 359–384. [Google Scholar] [CrossRef]
- Burton, D.; Wood, L.J. Seismic geomorphology and tectonostratigraphic fill of half grabens, West Natuna Basin, Indonesia. AAPG Bull. 2010, 94, 1695–1712. [Google Scholar] [CrossRef]
- Dalla Valle, G.; Gamberi, F.; Rocchini, P.; Minisini, D.; Errera, A.; Baglioni, L.; Trincardi, F. 3D seismic geomorphology of mass transport complexes in a foredeep basin: Examples from the Pleistocene of the Central Adriatic Basin (Mediterranean Sea). Sediment. Geol. 2013, 294, 127–141. [Google Scholar] [CrossRef]
- Gee, M.J.R.; Gawthorpe, R.L.; Bakke, K.; Friedmann, S.J. Seismic Geomorphology and Evolution of Submarine Channels from the Angolan Continental Margin. J. Sediment. Res. 2007, 77, 433–446. [Google Scholar] [CrossRef]
- Hadler-Jacobsen, F.; Gardner, M.H.; Borer, J.M. Seismic stratigraphic and geomorphic analysis of deep-marine deposition along the West African continental margin. Geol. Soc. Lond. Spec. Publ. 2007, 277, 47–84. [Google Scholar] [CrossRef]
- Infante-Paez, L.; Marfurt, K.J. Seismic expression and geomorphology of igneous bodies: A Taranaki Basin, New Zealand, case study. Interpretation 2017, 5, SK121–SK140. [Google Scholar] [CrossRef]
- Qin, Y.; Alves, T.M.; Constantine, J.; Gamboa, D. Quantitative seismic geomorphology of a submarine channel system in SE Brazil (Espírito Santo Basin): Scale comparison with other submarine channel systems. Mar. Pet. Geol. 2016, 78, 455–473. [Google Scholar] [CrossRef]
- Rankey, E.C. Seismic architecture and seismic geomorphology of heterozoan carbonates: Eocene-Oligocene, Browse Basin, Northwest Shelf, Australia. Mar. Pet. Geol. 2017, 82, 424–443. [Google Scholar] [CrossRef]
- Scarselli, N.; McClay, K.; Elders, C. Seismic geomorphology of cretaceous megaslides offshore Namibia (Orange Basin): Insights into segmentation and degradation of gravity-driven linked systems. Mar. Pet. Geol. 2016, 75, 151–180. [Google Scholar] [CrossRef]
- Bischoff, A.; Planke, S.; Holford, S.; Nicol, A. Seismic geomorphology, architecture and stratigraphy of volcanoes buried in sedimentary basins. In Updates in Volcanology-Transdisciplinary Nature of Volcano Science; IntechOpen: London, UK, 2021. [Google Scholar]
- Zeng, H. What is seismic sedimentology? A tutorial. Interpretation 2018, 6, SD1–SD12. [Google Scholar] [CrossRef]
- Omosanya, K.O.; Harishidayat, D.; Marheni, L.; Johansen, S.E.; Felix, M.; Abrahamson, P. Recurrent mass-wasting in the Sørvestsnaget Basin Southwestern Barents Sea: A test of multiple hypotheses. Mar. Geol. 2016, 376, 175–193. [Google Scholar] [CrossRef]
- Harishidayat, D.; Omosanya, K.O.; Johansen, S.E.; Eruteya, O.E.; Niyazi, Y. Morphometric analysis of sediment conduits on a bathymetric high: Implications for palaeoenvironment and hydrocarbon prospectivity. Basin Res. 2018, 30, 1015–1041. [Google Scholar] [CrossRef]
- Harishidayat, D.; Raja, W.R. Quantitative Seismic Geomorphology of Four Different Types of the Continental Slope Channel Complexes in the Canterbury Basin, New Zealand. Appl. Sci. 2022, 12, 4386. [Google Scholar] [CrossRef]
- Shumaker, L.E.; Jobe, Z.R.; Johnstone, S.A.; Pettinga, L.A.; Cai, D.; Moody, J.D. Controls on submarine channel-modifying processes identified through morphometric scaling relationships. Geosphere 2018, 14, 2171–2187. [Google Scholar] [CrossRef] [Green Version]
- Kristensen, T.B.; Huuse, M.; Piotrowski, J.A.; Clausen, O.R. A morphometric analysis of tunnel valleys in the eastern North Sea based on 3D seismic data. J. Quat. Sci. 2007, 22, 801–815. [Google Scholar] [CrossRef]
- Niyazi, Y.; Eruteya, O.E.; Omosanya, K.O.; Harishidayat, D.; Johansen, S.E.; Waldmann, N. Seismic geomorphology of submarine channel-belt complexes in the Pliocene of the Levant Basin, offshore central Israel. Mar. Geol. 2018, 403, 123–138. [Google Scholar] [CrossRef]
- Wood, L.J. Quantitative Seismic Geomorphology of Pliocene and Miocene Fluvial Systems in the Northern Gulf of Mexico, U.S.A. J. Sediment. Res. 2007, 77, 713–730. [Google Scholar] [CrossRef]
- Distefano, S.; Gamberi, F.; Borzì, L.; Di Stefano, A. Quaternary coastal landscape evolution and sea-level rise: An example from south-east sicily. Geosciences 2021, 11, 506. [Google Scholar] [CrossRef]
- Muzirafuti, A.; Barreca, G.; Crupi, A.; Faina, G.; Paltrinieri, D.; Lanza, S.; Randazzo, G. The contribution of multispectral satellite image to shallowwater bathymetry mapping on the Coast of Misano Adriatico, Italy. J. Mar. Sci. Eng. 2020, 8, 126. [Google Scholar] [CrossRef]
- Muzirafuti, A.; Crupi, A.; Lanza, S.; Barreca, G.; Randazzo, G. Shallow water bathymetry by satellite image: A case study on the coast of San Vito Lo Capo Peninsula, Northwestern Sicily, Italy. In Proceedings of the 2019 IMEKO TC19 International Workshop on Metrology for the Sea: Learning to Measure Sea Health Parameters, MetroSea 2019, Genoa, Italy, 3–5 October 2019; pp. 129–134. [Google Scholar]
- Harvey, A. Introducing Geomorphology: A Guide to Landforms and Processes; Dunedin Academic Press Ltd.: Edinburgh, UK, 2012. [Google Scholar]
- Huggett, R.J. Fundamentals of Geomorphology; Routledge: London, UK, 2016. [Google Scholar]
- Holden, J. An Introduction to Physical Geography and the Environment; Pearson Education: London, UK, 2017. [Google Scholar]
- Bierman, P.R.; Montgomery, D.R. Key Concepts in Geomorphology; W. H. Freeman and Company Publisher: New York, NY, USA, 2020. [Google Scholar]
- Pieri, D. Geomorphology. In Encyclopedia of Remote Sensing; Njoku, E.G., Ed.; Springer: New York, NY, USA, 2014; pp. 237–241. [Google Scholar]
- Melis, M.T.; Pisani, L.; De Waele, J. On the Use of Tri-Stereo Pleiades Images for the Morphometric Measurement of Dolines in the Basaltic Plateau of Azrou (Middle Atlas, Morocco). Remote Sens. 2021, 13, 4087. [Google Scholar] [CrossRef]
- Muzirafuti, A.; Boualoul, M.; Barreca, G.; Allaoui, A.; Bouikbane, H.; Lanza, S.; Crupi, A.; Randazzo, G. Fusion of Remote Sensing and Applied Geophysics for Sinkholes Identification in Tabular Middle Atlas of Morocco (the Causse of El Hajeb): Impact on the Protection of Water Resource. Resources 2020, 9, 51. [Google Scholar] [CrossRef]
- Randazzo, G.; Italiano, F.; Micallef, A.; Tomasello, A.; Cassetti, F.P.; Zammit, A.; D’Amico, S.; Saliba, O.; Cascio, M.; Cavallaro, F.; et al. WebGIS Implementation for Dynamic Mapping and Visualization of Coastal Geospatial Data: A Case Study of BESS Project. Appl. Sci. 2021, 11, 8233. [Google Scholar] [CrossRef]
- Anders, K.; Winiwarter, L.; Mara, H.; Lindenbergh, R.; Vos, S.E.; Höfle, B. Fully automatic spatiotemporal segmentation of 3D LiDAR time series for the extraction of natural surface changes. ISPRS J. Photogramm. Remote Sens. 2021, 173, 297–308. [Google Scholar] [CrossRef]
- Bonasera, M.; Cerrone, C.; Caso, F.; Lanza, S.; Fubelli, G.; Randazzo, G. Geomorphological and Structural Assessment of the Coastal Area of Capo Faro Promontory, NE Salina (Aeolian Islands, Italy). Land 2022, 11, 1106. [Google Scholar] [CrossRef]
- Borzì, L.; Anfuso, G.; Manno, G.; Distefano, S.; Urso, S.; Chiarella, D.; Di Stefano, A. Shoreline evolution and environmental changes at the nw area of the gulf of gela (Sicily, Italy). Land 2021, 10, 1034. [Google Scholar] [CrossRef]
- Bianco, F.; Conti, P.; García-Ayllon, S.; Pranzini, E. An integrated approach to analyze sedimentary stock and coastal erosion in vulnerable areas: Resilience assessment of san vicenzo’s coast (Italy). Water 2020, 12, 805. [Google Scholar] [CrossRef]
- Cinelli, I.; Anfuso, G.; Bartoletti, E.; Rossi, L.; Pranzini, E. The making of a gravel beach (Cavo, Elba Island, Italy). J. Mar. Sci. Eng. 2021, 9, 1148. [Google Scholar] [CrossRef]
- Randazzo, G.; Barreca, G.; Cascio, M.; Crupi, A.; Fontana, M.; Gregorio, F.; Lanza, S.; Muzirafuti, A. Analysis of very high spatial resolution images for automatic shoreline extraction and satellite-derived bathymetry mapping. Geosciences 2020, 10, 172. [Google Scholar] [CrossRef]
- Cigna, F.; Tapete, D. Sentinel-1 Big Data Processing with P-SBAS InSAR in the Geohazards Exploitation Platform: An Experiment on Coastal Land Subsidence and Landslides in Italy. Remote Sens. 2021, 13, 885. [Google Scholar] [CrossRef]
- Mantovani, M.; Devoto, S.; Piacentini, D.; Prampolini, M.; Soldati, M.; Pasuto, A. Advanced SAR interferometric analysis to support geomorphological interpretation of slow-moving coastal landslides (Malta, Mediterranean Sea). Remote Sens. 2016, 8, 443. [Google Scholar] [CrossRef]
- Cigna, F.; Tapete, D. Urban growth and land subsidence: Multi-decadal investigation using human settlement data and satellite InSAR in Morelia, Mexico. Sci. Total Environ. 2022, 811, 152211. [Google Scholar] [CrossRef]
- Jiang, H.; Balz, T.; Cigna, F.; Tapete, D. Land subsidence in wuhan revealed using a non-linear PSInSAR approach with long time series of COSMO-SkyMed SAR data. Remote Sens. 2021, 13, 1256. [Google Scholar] [CrossRef]
- Crosetto, M.; Solari, L.; Mróz, M.; Balasis-Levinsen, J.; Casagli, N.; Frei, M.; Oyen, A.; Moldestad, D.A.; Bateson, L.; Guerrieri, L.; et al. The evolution of wide-area DInSAR: From regional and national services to the European ground motion service. Remote Sens. 2020, 12, 2043. [Google Scholar] [CrossRef]
- Muzirafuti, A.; Randazzo, G.; Maria, C.; Lanza, S. UAV Photogrammetry-Based Mapping of the Pocket Beaches of Isola Bella Bay, Taormina (Eastern Sicily); The Institute of Electrical and Electronics Engineers (IEEE): Calabria, Italy, 2021. [Google Scholar]
- Makama, A.; Kuladinithi, K.; Timm-Giel, A. Wireless Geophone Networks for Land Seismic Data Acquisition: A Survey, Tutorial and Performance Evaluation. Sensors 2021, 21, 5171. [Google Scholar] [CrossRef] [PubMed]
- Canty, M.J.; Nielsen, A.A.; Conradsen, K.; Skriver, H. Statistical Analysis of Changes in Sentinel-1 Time Series on the Google Earth Engine. Remote Sens. 2020, 12, 46. [Google Scholar] [CrossRef]
- Van Natijne, A.L.; Bogaard, T.A.; van Leijen, F.J.; Hanssen, R.F.; Lindenbergh, R.C. World-wide InSAR sensitivity index for landslide deformation tracking. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102829. [Google Scholar] [CrossRef]
- Garcia, G.P.B.; Grohmann, C.H. DEM-based geomorphological mapping and landforms characterization of a tropical karst environment in southeastern Brazil. J. South Am. Earth Sci. 2019, 93, 14–22. [Google Scholar] [CrossRef]
- Magliulo, P.; Valente, A. GIS-Based geomorphological map of the Calore River floodplain near Benevento (Southern Italy) overflooded by the 15th october 2015 event. Water 2020, 12, 148. [Google Scholar] [CrossRef]
- Conforti, M.; Mercuri, M.; Borrelli, L. Morphological changes detection of a large earthflow using archived images, lidar-derived dtm, and uav-based remote sensing. Remote Sens. 2021, 13, 120. [Google Scholar] [CrossRef]
- Brunier, G.; Fleury, J.; Anthony, E.J.; Pothin, V.; Vella, C.; Dussouillez, P.; Gardel, A.; Michaud, E. Structure-From-Motion photogrammetry for highresolution coastal and fluvial geomorphic surveys. Geomorphol. Relief Processus Environ. 2016, 22, 147–161. [Google Scholar] [CrossRef]
- Mohamed Shaffril, H.A.; Samsuddin, S.F.; Abu Samah, A. The ABC of systematic literature review: The basic methodological guidance for beginners. Qual. Quant. 2021, 55, 1319–1346. [Google Scholar] [CrossRef]
- Munn, Z.; Peters, M.D.J.; Stern, C.; Tufanaru, C.; McArthur, A.; Aromataris, E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med. Res. Methodol. 2018, 18, 143. [Google Scholar] [CrossRef] [PubMed]
- Snyder, H. Literature review as a research methodology: An overview and guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Xiao, Y.; Watson, M. Guidance on conducting a systematic literature review. J. Plan. Educ. Res. 2019, 39, 93–112. [Google Scholar] [CrossRef]
- Cook, K.L.; Dietze, M. Seismic Advances in Process Geomorphology. Annu. Rev. Earth Planet. Sci. 2022, 50, 183–204. [Google Scholar] [CrossRef]
- Schrott, L.; Sass, O. Application of field geophysics in geomorphology: Advances and limitations exemplified by case studies. Geomorphology 2008, 93, 55–73. [Google Scholar] [CrossRef]
- Kruse, S. 3.5 Near-Surface Geophysics in Geomorphology. In Treatise on Geomorphology; Shroder, J.F., Ed.; Academic Press: San Diego, CA, USA, 2013; pp. 103–129. [Google Scholar]
- Chopra, S.; Marfurt, K. Curvature attribute applications to 3D surface seismic data. Lead. Edge 2007, 26, 404–414. [Google Scholar] [CrossRef]
- Al-Shuhail, A.A.; Al-Dossary, S.A.; Mousa, W.A. Seismic Data Interpretation Using Digital Image Processing; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Brown, A.R. 8a. Horizon and Formation Attributes. In Interpretation of Three-Dimensional Seismic Data; Society of Exploration Geophysicists: Houston, TX, USA; American Association of Petroleum Geologists: Tulsa, Ok, USA, 2011; pp. 247–282. [Google Scholar]
- Herron, D.A. 3. Seismic Attributes. In First Steps in Seismic Interpretation; Society of Exploration Geophysicists: Houston, TX, USA, 2011; pp. 21–34. [Google Scholar]
- Marfurt, K.J. Seismic Attributes as the Framework for Data Integration throughout the Oilfield Life Cycle; Society of Exploration Geophysicists: Houston, TX, USA, 2018. [Google Scholar]
- Taner, M.T. Seismic attributes. CSEG Rec. 2001, 26, 48–56. [Google Scholar]
- Barnes, A.E. Seismic attributes in your facies. CSEG Rec. 2001, 26, 41–47. [Google Scholar]
- Chopra, S.; Marfurt, K.J. Seismic attributes—A historical perspective. Geophysics 2005, 70, 3SO–28SO. [Google Scholar] [CrossRef]
- Barnes, A.E. Redundant and useless seismic attributes. Geophysics 2007, 72, P33–P38. [Google Scholar] [CrossRef]
- Li, M.; Zhao, Y. Chapter 5–Seismic Attribute Analysis. In Geophysical Exploration Technology; Li, M., Zhao, Y., Eds.; Elsevier: Oxford, UK, 2014; pp. 103–131. [Google Scholar]
- Liner, C.; Li, C.F.; Gersztenkorn, A.; Smythe, J. SPICE: A new general seismic attribute. In SEG Technical Program Expanded Abstracts; Society of Exploration Geophysicists: Houston, TX, USA, 2004; pp. 433–436. [Google Scholar]
- Sidney, S. The Back Page; Chen and Sidney (1997) seismic attribute history. Lead. Edge 2007, 26, 1488. [Google Scholar] [CrossRef]
- Huuse, M.; Feary, D.A. Seismic inversion for acoustic impedance and porosity of Cenozoic cool-water carbonates on the upper continental slope of the Great Australian Bight. Mar. Geol. 2005, 215, 123–134. [Google Scholar] [CrossRef]
- Veeken, P.C.; Priezzhev, I.I.; Shmaryan, L.E.; Shteyn, Y.I.; Barkov, A.Y.; Ampilov, Y.P. Nonlinear multitrace genetic inversion applied on seismic data across the Shtokman field, offshore northern Russia. Geophysics 2009, 74, WCD49–WCD59. [Google Scholar] [CrossRef]
- Chopra, S.; Marfurt, K.J. Seismic attributes for prospect identification and reservoir characterization. In SEG Geophysical Development Series; Society of Exploration Geophysicists: Houston, TX, USA; European Association of Geoscientists and Engineers: Tulsa, OK, USA, 2007. [Google Scholar]
- Lutome, M.S.; Lin, C.; Chunmei, D.; Zhang, X.; Harishidayat, D. Seismic sedimentology of lacustrine delta-fed turbidite systems: Implications for paleoenvironment reconstruction and reservoir prediction. Mar. Pet. Geol. 2020, 113, 104159. [Google Scholar] [CrossRef]
- Zeng, H.; Yuan, B. Seismic sedimentology: Concepts and challenges. In Proceedings of the Beijing 2009 International Geophysical Conference and Exposition, Beijing, China, 24–27 April 2009; Society of Exploration Geophysicists: Beijing, China, 2009; p. 280. [Google Scholar]
- Zeng, H.; Hentz, T.F. High-frequency sequence stratigraphy from seismic sedimentology: Applied to Miocene, Vermilion Block 50, Tiger Shoal area, offshore Louisiana. AAPG Bull. 2004, 88, 153–174. [Google Scholar] [CrossRef]
- Zeng, H.; Ambrose, W.A.; Villalta, E. Seismic sedimentology and regional depositional systems in Mioceno Norte, Lake Maracaibo, Venezuela. Lead. Edge 2001, 20, 1260–1269. [Google Scholar] [CrossRef]
- Zeng, H.; Backus, M.M. Interpretive advantages of 90°-phase wavelets: Part 1—Modeling. Geophysics 2005, 70, C7–C15. [Google Scholar] [CrossRef]
- Zeng, H.; Backus, M.M. Interpretive advantages of 90°-phase wavelets: Part 2—Seismic applications. Geophysics 2005, 70, C17–C24. [Google Scholar] [CrossRef]
- Zeng, H. Stratal slicing: Benefits and challenges. Lead. Edge 2010, 29, 1040–1047. [Google Scholar] [CrossRef]
- Zeng, H. Stratal slice: The next generation. Lead. Edge 2013, 32, 140–144. [Google Scholar] [CrossRef]
- Posamentier, H.W.; Kolla, V. Seismic Geomorphology and Stratigraphy of Depositional Elements in Deep-Water Settings. J. Sediment. Res. 2003, 73, 367–388. [Google Scholar] [CrossRef]
- Deiana, G.; Lecca, L.; Melis, R.T.; Soldati, M.; Demurtas, V.; Orrù, P.E. Submarine Geomorphology of the Southwestern Sardinian Continental Shelf (Mediterranean Sea): Insights into the Last Glacial Maximum Sea-Level Changes and Related Environments. Water 2021, 13, 155. [Google Scholar] [CrossRef]
- Gao, M.; Xu, X.; Klinger, Y.; van der Woerd, J.; Tapponnier, P. High-resolution mapping based on an Unmanned Aerial Vehicle (UAV) to capture paleoseismic offsets along the Altyn-Tagh fault, China. Sci. Rep. 2017, 7, 8281. [Google Scholar] [CrossRef]
- Chaves, M.U.; Oliver, F.; Kawakami, G.; Di Marco, L. Visualization of Geological Features Using Seismic Volume Rendering, Rgb Blending and Geobody Extraction. In Proceedings of the 12th International Congress of the Brazilian Geophysical Society, Janeiro, Brazil, 15–18 August 2011. [Google Scholar]
- Alves, T.M.; Omosanya, K.O.; Gowling, P. Volume rendering of enigmatic high-amplitude anomalies in southeast Brazil: A workflow to distinguish lithologic features from fluid accumulations. Interpretation 2015, 3, A1–A14. [Google Scholar] [CrossRef]
- Chopra, S.; Marfurt, K. Blended data renders visual value. AAPG Explor. Geophys. Corner 2011, 3, 38–40. [Google Scholar]
- Zeng, H. RGB blending of frequency panels: A new useful tool for high-resolution 3D stratigraphic imaging. In Proceedings of the 2017 SEG International Exposition and Annual Meeting, Houston, TX, USA, 24–29 September 2017. [Google Scholar]
- Mohammedyasin, S.M.; Lippard, S.J.; Omosanya, K.O.; Johansen, S.E.; Harishidayat, D. Deep-seated faults and hydrocarbon leakage in the Snøhvit Gas Field, Hammerfest Basin, Southwestern Barents Sea. Mar. Pet. Geol. 2016, 77, 160–178. [Google Scholar] [CrossRef] [Green Version]
- Marfurt, K.; Wen, R.; Zhang, R. 3-D Visualization and Geobody Picking of Amplitude Anomalies in Deepwater Seismic Data. AAPG Explor. 2021, 09, 10–11. [Google Scholar]
- Castanie, L.; Levy, B.; Bosquet, F. VolumeExplorer: Roaming large volumes to couple visualization and data processing for oil and gas exploration. In Proceedings of the VIS 05. IEEE Visualization, 2005, Minneapolis, MN, USA, 23–28 October 2005; pp. 247–254. [Google Scholar]
- Chopra, S.; Marfurt, K.J. Detecting stratigraphic features via crossplotting of seismic discontinuity attributes and their volume visualization. Lead. Edge 2009, 28, 1422–1426. [Google Scholar] [CrossRef]
- Castanie, L.; Bosquet, F.; Levy, B. Advances in seismic interpretation using new volume visualization techniques. First Break 2005, 23, 1365–2397. [Google Scholar] [CrossRef]
- Lomask, J.; Guitton, A. Volumetric flattening: An interpretation tool. Lead. Edge 2007, 26, 888–897. [Google Scholar] [CrossRef]
- Dramsch, J.S. Chapter One–70 years of machine learning in geoscience in review. In Advances in Geophysics; Moseley, B., Krischer, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 61, pp. 1–55. [Google Scholar]
- Karpatne, A.; Ebert-Uphoff, I.; Ravela, S.; Babaie, H.A.; Kumar, V. Machine learning for the geosciences: Challenges and opportunities. IEEE Trans. Knowl. Data Eng. 2018, 31, 1544–1554. [Google Scholar] [CrossRef]
- Bishop, C. Pattern Recognition and Machine Learning; Springer: Amsterdam, The Netherlands, 2006; Volume 4. [Google Scholar]
- Niyazi, Y.; Warne, M.; Ierodiaconou, D. Machine learning delineation of buried igneous features from the offshore Otway Basin in southeast Australia. Interpretation 2022, 10, 1–70. [Google Scholar] [CrossRef]
- Hoyes, J.; Cheret, T. A review of “global” interpretation methods for automated 3D horizon picking. Lead. Edge 2011, 30, 38–47. [Google Scholar] [CrossRef]
- Liu, M.; Jervis, M.; Li, W.; Nivlet, P. Seismic facies classification using supervised convolutional neural networks and semisupervised generative adversarial networks. Geophysics 2020, 85, O47–O58. [Google Scholar] [CrossRef]
- Wrona, T.; Pan, I.; Gawthorpe, R.L.; Fossen, H. Seismic facies analysis using machine learning. Geophysics 2018, 83, O83–O95. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, T.; Liu, Y.; Zhang, Y.; Liu, J. Automatic seismic facies interpretation using supervised deep learning. Geophysics 2021, 86, IM15–IM33. [Google Scholar] [CrossRef]
- Kumar, P.C.; Sain, K. A machine learning tool for interpretation of Mass Transport Deposits from seismic data. Sci. Rep. 2020, 10, 14134. [Google Scholar] [CrossRef]
- Bugge, A.J.; Lie, J.E.; Evensen, A.K.; Faleide, J.I.; Clark, S. Automatic extraction of dislocated horizons from 3D seismic data using nonlocal trace matching. Geophysics 2019, 84, IM77–IM86. [Google Scholar] [CrossRef]
- Infante-Paez, L.; Marfurt, K.J. Using machine learning as an aid to seismic geomorphology, which attributes are the best input? Interpretation 2019, 7, SE1–SE18. [Google Scholar] [CrossRef]
- Liu, Z.; Song, C.; Li, K.; She, B.; Yao, X.; Qian, F.; Hu, G. Horizon extraction using ordered clustering on a directed and colored graph. Interpretation 2019, 8, T1–T11. [Google Scholar] [CrossRef]
- Peters, B.; Granek, J.; Haber, E. Multiresolution neural networks for tracking seismic horizons from few training images. Interpretation 2019, 7, SE201–SE213. [Google Scholar] [CrossRef]
- Lou, Y.; Zhang, B.; Lin, T.; Cao, D. Seismic horizon picking by integrating reflector dip and instantaneous phase attributes. Geophysics 2020, 85, O37–O45. [Google Scholar] [CrossRef]
- Yang, L.; Sun, S.Z. Seismic horizon tracking using a deep convolutional neural network. J. Pet. Sci. Eng. 2020, 187, 106709. [Google Scholar] [CrossRef]
- Bi, Z.; Wu, X.; Geng, Z.; Li, H. Deep Relative Geologic Time: A Deep Learning Method for Simultaneously Interpreting 3-D Seismic Horizons and Faults. J. Geophys. Res. Solid Earth 2021, 126, e2021JB021882. [Google Scholar] [CrossRef]
- La Marca, K.; Bedle, H. Deepwater seismic facies and architectural element interpretation aided with unsupervised machine learning techniques: Taranaki basin, New Zealand. Mar. Pet. Geol. 2022, 136, 105427. [Google Scholar] [CrossRef]
- Singh, S.; Tsvankin, I.; Naeini, E.Z. Facies prediction with Bayesian inference: Application of supervised and semisupervised deep learning. Interpretation 2022, 10, T279–T290. [Google Scholar] [CrossRef]
- AlRegib, G.; Deriche, M.; Long, Z.; Di, H.; Wang, Z.; Alaudah, Y.; Shafiq, M.A.; Alfarraj, M. Subsurface Structure Analysis Using Computational Interpretation and Learning: A Visual Signal Processing Perspective. IEEE Signal Process. Mag. 2018, 35, 82–98. [Google Scholar] [CrossRef] [Green Version]
- An, Y.; Guo, J.; Ye, Q.; Childs, C.; Walsh, J.; Dong, R. Deep convolutional neural network for automatic fault recognition from 3D seismic datasets. Comput. Geosci. 2021, 153, 104776. [Google Scholar] [CrossRef]
- Laudon, C.; Qi, J.; Rondon, A.; Rouis, L.; Kabazi, H. An enhanced fault detection workflow combining machine learning and seismic attributes yields an improved fault model for Caspian Sea asset. First Break 2021, 39, 53–60. [Google Scholar] [CrossRef]
- Wu, X.; Liang, L.; Shi, Y.; Fomel, S. FaultSeg3D: Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation. Geophysics 2019, 84, IM35–IM45. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, Z.; Liu, S. Improving Performance of Seismic Fault Detection by Fine-Tuning the Convolutional Neural Network Pre-Trained with Synthetic Samples. Energies 2021, 14, 3650. [Google Scholar] [CrossRef]
- Di, H.; AlRegib, G. Semi-automatic fault/fracture interpretation based on seismic geometry analysis. Geophys. Prospect. 2019, 67, 1379–1391. [Google Scholar] [CrossRef]
- De Groot, P. Global Seismic Interpretation Techniques Are Coming of Age. ASEG Ext. Abstr. 2013, 2013, 1–4. [Google Scholar] [CrossRef]
- Gao, D. 3D seismic volume visualization and interpretation: An integrated workflow with case studies. Geophysics 2009, 74, W1–W12. [Google Scholar] [CrossRef]
- Paumard, V.; Bourget, J.; Durot, B.; Lacaze, S.; Payenberg, T.; George, A.D.; Lang, S. Full-volume 3D seismic interpretation methods: A new step towards high-resolution seismic stratigraphy. Interpretation 2019, 7, B33–B47. [Google Scholar] [CrossRef]
- De Groot, P.; Bruin, G.; McBeath, K. OpendTect SSIS–Sequence stratigraphic interpretation system. Drill. Explor. World 2006, 15, 31–34. [Google Scholar]
- Sun, T.; Li, H.; Wu, K.; Chen, F.; Zhu, Z.; Hu, Z. Data-Driven Predictive Modelling of Mineral Prospectivity Using Machine Learning and Deep Learning Methods: A Case Study from Southern Jiangxi Province, China. Minerals 2020, 10, 102. [Google Scholar] [CrossRef]
- Johansen, S.; Granberg, E.; Mellere, D.; Arntsen, B.; Olsen, T. Decoupling of seismic reflectors and stratigraphic timelines: A modeling study of Tertiary strata from Svalbard. Geophysics 2007, 72, SM273–SM280. [Google Scholar] [CrossRef] [Green Version]
- Bakke, K.; Gjelberg, J.; Agerlin Petersen, S. Compound seismic modelling of the Ainsa II turbidite system, Spain: Application to deep-water channel systems offshore Angola. Mar. Pet. Geol. 2008, 25, 1058–1073. [Google Scholar] [CrossRef]
- Taufani, L.; Harishidayat, D.; Rohmana, R.C.; Fardiansyah, I.; Purnama, Y.S.; Indriyanto, I.B. Utilization of Digital Mapping and Outcrop Model to Assess Reservoir Characterization and Quality Index: Study Case from Ngrayong Formation in the Randugunting Block, East Java; Indonesian Petroleum Association: South Jakarta, Indonesia, 5–8 September 2021. [Google Scholar]
- Bakke, K.; Petersen, S.A.; Martinsen, O.J.; Johansen, T.; Lien, T.; Thurmond, J. Seismic modeling of outcrop analogues: Techniques and applications. Outcrops Revital. Tools Tech. Appl. Tulsa Okla. SEPM Concepts Sedimentol. Paleontol. 2011, 10, 69–86. [Google Scholar]
- Lecomte, I.; Lavadera, P.L.; Anell, I.; Buckley, S.J.; Schmid, D.W.; Heeremans, M. Ray-based seismic modeling of geologic models: Understanding and analyzing seismic images efficiently. Interpretation 2015, 3, SAC71–SAC89. [Google Scholar] [CrossRef]
- Grippa, A.; Hurst, A.; Palladino, G.; Iacopini, D.; Lecomte, I.; Huuse, M. Seismic imaging of complex geometry: Forward modeling of sandstone intrusions. Earth Planet. Sci. Lett. 2019, 513, 51–63. [Google Scholar] [CrossRef]
- Harishidayat, D.; Johansen, S.E.; Puigdefabregas, C.; Omosanya, K.O. Compound Seismic Forward Modeling of the Atiart Submarine Canyon Outcrop, Spain: Application to the Submarine Canyon System on the Subsurface Loppa High, Barents Sea. In Proceedings of the American Association of Petroleum Geologists (AAPG)–Annual Conference and Exhibition (ACE), Salt Lake City, UT, USA, 11–13 May 2018. [Google Scholar]
- Rohmana, R.C.; Fardiansyah, I.; Taufani, L.; Harishidayat, D. Depositional processes and facies architecture of Balikpapan sandstone formation, application of 3D Digital Outcrop Model (DOM) to identify reservoir geometry and distribution in deltaic system. Sci. Contrib. Oil Gas 2019, 42, 35–42. [Google Scholar] [CrossRef]
Database | Keywords | Records | Total |
---|---|---|---|
Scopus | Seismic geomorphology | 1197 | |
Surface geomorphology technique | 590 | 1841 | |
Integrated seismic and surface geomorphology | 54 | ||
Web of Sciences | Seismic geomorphology | 1229 | |
Surface geomorphology technique | 613 | 1926 | |
Integrated seismic and surface geomorphology | 58 | ||
Geoscience World | Seismic geomorphology | 3990 | |
Surface geomorphology technique | 3498 | 10,031 | |
Integrated seismic and surface geomorphology | 2543 | ||
Google Scholar | Seismic geomorphology | 3480 | |
Surface geomorphology technique | 12,700 | 19,040 | |
Integrated seismic and surface geomorphology | 2860 | ||
Seismic geomorphology | 45 | ||
MDPI | Surface geomorphology technique | 43 | 90 |
Integrated seismic and surface geomorphology | 2 |
Techniques | Geomorphological Analysis and Frequency | Scale and Resolution | Results | Ratios (In Time) and References |
---|---|---|---|---|
Seismic attribute | Most cases, often used | Vertical (20–30 m) & horizontal (10–20 m) | Good (Depends on data quality) | 1980s—now, see chapter 3 |
Seismic sedimentology | In special cases (e.g., thin bedded) | Vertical (2–10 m) & horizontal (10–20 m) | Good for thin bedded | 2010s—now, see chapter 4 |
Volume rendering and geobody extraction | In special cases (e.g., (3D seismic reflection data) | Vertical (20–30 m) & horizontal (10–20 m) | Good (Depends on data quality) | 2000s—now, see chapter 5 |
Machine learning | Becoming often (Last decade) | Vertical (20–30 m) & horizontal (10–20 m) | Good (Needs human validation) | 2010s—now, see chapter 6 |
Integrated seismic and surface geomorphology | Not often, lack of reference | Vertical (2–10 m) & horizontal (10–20 m) | Better (Reducing result uncertainty) | Proposed (This study) |
Techniques | Geomorphological Analysis | Scale of Studied Area | Results | References |
---|---|---|---|---|
Remote sensing techniques | Surface Depressions Surface processes Surface deformation | Local, Reginal, Continental | Information on the location, distance, and volume | Melis et al. 2021 [59] Muzirafuti et al. 2020 [52] Borzì et al. 2021 [64] Bianco et al. 2021 [65] Randazzo et al. 2020 [67] Cigna et al. 2021 [68] Mantovani et al. 2016 [69] Jiang et al. 2021 [71] Crosetto et al. 2020 [72] van Natijne et al. 2022 [76] |
Proxy geomorphological mapping (aerial photogrammetry, LiDAR.) | Surface and marine processes Surface and marine features | Regional local | Information on the location, distance, and volume, 3D models | Randazzo et al.2020 [67] Anders et al. 2021 [62] Bonasera et al. 2022 [63] Muzirafuti et al. 2021 [73] Deiana et al. 2021 [112] Gao et al. 2017 [113] |
Geological field survey | Surface and marine processes | Local | Information on the location, distance, and volume | Bonasera et al. 2022 [63] Taufani et al. 2021 [155] |
Quantitative geomorphology | Marine sedimentary features | Local | Information on the location, distance, and volume | Distefano et al. 2021 [51] Muzirafuti et al. 2021 [73] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harishidayat, D.; Al-Shuhail, A.; Randazzo, G.; Lanza, S.; Muzirafuti, A. Reconstruction of Land and Marine Features by Seismic and Surface Geomorphology Techniques. Appl. Sci. 2022, 12, 9611. https://doi.org/10.3390/app12199611
Harishidayat D, Al-Shuhail A, Randazzo G, Lanza S, Muzirafuti A. Reconstruction of Land and Marine Features by Seismic and Surface Geomorphology Techniques. Applied Sciences. 2022; 12(19):9611. https://doi.org/10.3390/app12199611
Chicago/Turabian StyleHarishidayat, Dicky, Abdullatif Al-Shuhail, Giovanni Randazzo, Stefania Lanza, and Anselme Muzirafuti. 2022. "Reconstruction of Land and Marine Features by Seismic and Surface Geomorphology Techniques" Applied Sciences 12, no. 19: 9611. https://doi.org/10.3390/app12199611
APA StyleHarishidayat, D., Al-Shuhail, A., Randazzo, G., Lanza, S., & Muzirafuti, A. (2022). Reconstruction of Land and Marine Features by Seismic and Surface Geomorphology Techniques. Applied Sciences, 12(19), 9611. https://doi.org/10.3390/app12199611