Enhancing 3D Reconstruction Model by Deep Learning and Its Application in Building Damage Assessment after Earthquake
Abstract
:1. Introduction
2. Datasets
3. Methodology
3.1. Calculation of Camera Parameters
3.2. 3D Reconstruction Based on CasMVSNet
3.3. Assessment of Damaged Buildings
4. Experiment and Results
4.1. Experimental Details
4.2. Results
4.2.1. Time Consumption
4.2.2. Memory Consumption
4.2.3. Result of 3D Reconstruction
4.2.4. Result of the Evaluation
5. Discussion
5.1. Network Structure
5.2. Robustness
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UVA | unmanned air vehicle |
GA | genetic algorithm |
MLP | multi-layer perceptron |
RC | reinforced-concrete |
SMART SKY EYE | smart building safety assessment system using UAV |
CNN | convolutional neural networks |
DEM | digital elevation models |
MVS | multi-view stereo |
SfM | structure-from-motion |
BA | bundle adjustment |
FPN | feature pyramid networks |
EMS-98 | European Macro-Earthquake Magnitude in 1998 |
References
- Yamazaki, F.; Kouchi, K.I.; Matsuoka, M.; Kohiyama, M.; Muraoka, N. Damage detection from high-resolution satellite images for the 2003 Boumerdes, Algeria earthquake. In Proceedings of the 13th World Conference on Earthquake Engineering, International Association for Earthquake Engineering, Vancouver, BC, Canada, 1–6 August 2004; p. 13. [Google Scholar]
- Li, S.; Tang, H. Classification of Building Damage Triggered by Earthquakes Using Decision Tree. Math. Probl. Eng. 2020, 2020, 1–15. [Google Scholar] [CrossRef]
- Bülbül, M.A.; Harirchian, E.; Işık, M.F.; Aghakouchaki Hosseini, S.E.; Işık, E. A Hybrid ANN-GA Model for an Automated Rapid Vulnerability Assessment of Existing RC Buildings. Appl. Sci. 2022, 12, 5138. [Google Scholar] [CrossRef]
- Harirchian, E.; Jadhav, K.; Kumari, V.; Lahmer, T. ML-EHSAPP: A prototype for machine learning-based earthquake hazard safety assessment of structures by using a smartphone app. Eur. J. Environ. Civ. Eng. 2021, 26, 5279–5299. [Google Scholar] [CrossRef]
- Bae, J.; Lee, J.; Jang, A.; Ju, Y.K.; Park, M.J. SMART SKY Eye system for preliminary structural safety assessment of buildings using unmanned aerial vehicles. Sensors 2022, 22, 2762. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Zhong, Y.; Wang, J.; Ma, A.; Zhang, L. Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework: From natural disasters to man-made disasters. Remote Sens. Environ. 2021, 265, 112636. [Google Scholar] [CrossRef]
- Ci, T.; Liu, Z.; Wang, Y. Assessment of the degree of building damage caused by disaster using convolutional neural networks in combination with ordinal regression. Remote Sens. 2019, 11, 2858. [Google Scholar] [CrossRef]
- Ji, M.; Liu, L.; Du, R.; Buchroithner, M.F. A comparative study of texture and convolutional neural network features for detecting collapsed buildings after earthquakes using pre-and post-event satellite imagery. Remote Sens. 2019, 11, 1202. [Google Scholar] [CrossRef]
- Turker, M.; Cetinkaya, B. Automatic detection of earthquake-damaged buildings using DEMs created from pre-and post-earthquake stereo aerial photographs. Int. J. Remote Sens. 2005, 26, 823–832. [Google Scholar] [CrossRef]
- Muzirafuti, A.; Cascio, M.; Lanza, S.; Randazzo, G. UAV Photogrammetry-based Mapping of the Pocket Beaches of Isola Bella Bay, Taormina (Eastern Sicily). In Proceedings of the 2021 International Workshop on Metrology for the Sea, Learning to Measure Sea Health Parameters (MetroSea), Reggio Calabria, Italy, 4–6 October 2021; pp. 418–422. [Google Scholar]
- Randazzo, G.; Italiano, F.; Micallef, A.; Tomasello, A.; Cassetti, F.P.; Zammit, A.; D’Amico, S.; Saliba, O.; Cascio, M.; Cavallaro, F. WebGIS Implementation for Dynamic Mapping and Visualization of Coastal Geospatial Data: A Case Study of BESS Project. Appl. Sci. 2021, 11, 8233. [Google Scholar] [CrossRef]
- Stepinac, M.; Lulić, L.; Ožić, K. The Role of UAV and Laser Scanners in the Post-earthquake Assessment of Heritage Buildings After the 2020 Earthquakes in Croatia. In Advanced Nondestructive and Structural Techniques for Diagnosis, Redesign and Health Monitoring for the Preservation of Cultural Heritage; Springer: Berlin/Heidelberg, Germany, 2022; pp. 167–177. [Google Scholar]
- Bleyer, M.; Rhemann, C.; Rother, C. Patchmatch stereo-stereo matching with slanted support windows. In Proceedings of the Bmvc, Dundee, UK, 29 August–2 September 2011; pp. 1–11. [Google Scholar]
- Hirschmuller, H. Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 30, 328–341. [Google Scholar] [CrossRef] [PubMed]
- Tola, E.; Strecha, C.; Fua, P. Efficient large-scale multi-view stereo for ultra high-resolution image sets. Mach. Vis. Appl. 2012, 23, 903–920. [Google Scholar] [CrossRef]
- Pix4D. Available online: https://www.pix4d.com/ (accessed on 29 August 2022).
- ContextCapture. Available online: https://www.bentley.com/en/products/brands/contextcapture (accessed on 29 August 2022).
- Agisoft. Available online: http://www.agisoft.com (accessed on 29 August 2022).
- Zhu, Q.; Min, C.; Wei, Z.; Chen, Y.; Wang, G. Deep Learning for Multi-View Stereo via Plane Sweep: A Survey. arXiv 2021, arXiv:2106.15328. [Google Scholar]
- Yao, Y.; Luo, Z.; Li, S.; Fang, T.; Quan, L. Mvsnet: Depth inference for unstructured multi-view stereo. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 767–783. [Google Scholar]
- Aanæs, H.; Jensen, R.R.; Vogiatzis, G.; Tola, E.; Dahl, A.B. Large-scale data for multiple-view stereopsis. Int. J. Comput. Vis. 2016, 120, 153–168. [Google Scholar] [CrossRef]
- Yao, Y.; Luo, Z.; Li, S.; Shen, T.; Fang, T.; Quan, L. Recurrent mvsnet for high-resolution multi-view stereo depth inference. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5525–5534. [Google Scholar]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Yan, J.; Wei, Z.; Yi, H.; Ding, M.; Zhang, R.; Chen, Y.; Wang, G.; Tai, Y.-W. Dense hybrid recurrent multi-view stereo net with dynamic consistency checking. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 674–689. [Google Scholar]
- Wei, Z.; Zhu, Q.; Min, C.; Chen, Y.; Wang, G. Aa-rmvsnet: Adaptive aggregation recurrent multi-view stereo network. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 6187–6196. [Google Scholar]
- Gu, X.; Fan, Z.; Zhu, S.; Dai, Z.; Tan, F.; Tan, P. Cascade cost volume for high-resolution multi-view stereo and stereo matching. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 20–25 June 2020; pp. 2495–2504. [Google Scholar]
- Tonioni, A.; Tosi, F.; Poggi, M.; Mattoccia, S.; Stefano, L.D. Real-time self-adaptive deep stereo. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 195–204. [Google Scholar]
- Yin, Z.; Darrell, T.; Yu, F. Hierarchical discrete distribution decomposition for match density estimation. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 6044–6053. [Google Scholar]
- Guptha, G.C.; Swain, S.; Al-Ansari, N.; Taloor, A.K.; Dayal, D. Evaluation of an urban drainage system and its resilience using remote sensing and GIS. Remote Sens. Appl. Soc. Environ. 2021, 23, 100601. [Google Scholar] [CrossRef]
- Kazemian, I.; Torabi, S.A.; Zobel, C.W.; Li, Y.; Baghersad, M. A multi-attribute supply chain network resilience assessment framework based on SNA-inspired indicators. Oper. Res. 2022, 22, 1853–1883. [Google Scholar]
- Schonberger, J.L.; Frahm, J.-M. Structure-from-motion revisited. In Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4104–4113.
- Ji, S.; Xu, W.; Yang, M.; Yu, K. 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Duarte, D.; Nex, F.; Kerle, N.; Vosselman, G. Multi-resolution feature fusion for image classification of building damages with convolutional neural networks. Remote Sens. 2018, 10, 1636. [Google Scholar] [CrossRef] [Green Version]
- Baggio, C.; Bernardini, A.; Colozza, R.; Corazza, L.; Della Bella, M.; Di Pasquale, G.; Dolce, M.; Goretti, A.; Martinelli, A.; Orsini, G. Field Manual for Post-Earthquake Damage and Safety Assessment and Short Term Countermeasures (AeDES); European Commission—Joint Research Centre—Institute for the Protection and Security of the Citizen: Ispra, Italy, 2007; pp. 1–100. [Google Scholar]
- Grünthal, G. European Macroseismic Scale 1998 (EMS-98); Conseil De L’europe: Strasbourg, France, 1998. [Google Scholar]
- CloudCompare. Available online: http://www.danielgm.net/cc (accessed on 29 August 2022).
- Zhang, L.; He, F.; Yan, J.; Du, H.; Zhou, Z.; Wang, Y. Quantitative Assessment of Building Damage of the Yangbi Earthquake Based on UAV Images. South China J. Seismol. 2021, 41, 76–81. [Google Scholar]
- Kendall, A.; Martirosyan, H.; Dasgupta, S.; Henry, P.; Kennedy, R.; Bachrach, A.; Bry, A. End-to-end learning of geometry and context for deep stereo regression. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 66–75. [Google Scholar]
- Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. arXiv 2015, arXiv:1511.07122. [Google Scholar]
- Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 764–773. [Google Scholar]
- Zhu, X.; Hu, H.; Lin, S.; Dai, J. Deformable convnets v2: More deformable, better results. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 9308–9316. [Google Scholar]
Reinforced Concrete | Masonry Buildings | 3D Model | Classification of Damage |
---|---|---|---|
Grade0: Negligible to slight damage (no structural damage, slight non-structural damage) | |||
Grade1: Moderate damage (slight structural damage, moderate non-structural damage) | |||
Grade2: Substantial to heavy damage (moderate structural damage, heavy non-structural damage) | |||
Grade3: Very heavy damage (heavy structural damage, very heavy non-structural damage) | |||
Grade4: Destruction (very heavy structural damage) |
Meth | Calculating Camera Parameters | 3D Reconstruction (min) | |
---|---|---|---|
1184 × 800 Pixel | 2160 × 1440 Pixel | ||
AA-RMVSNet | 61 | 163 | 499 |
D2HC-MVSNet | 61 | 124 | 447 |
CasMVSNet | 61 | 16 | 52 |
Meth | 1184 × 800 (MiB) | 2160 × 1440 (MiB) |
---|---|---|
AA-RMVSNet | 13659 | 22933 |
D2HC-MVSNet | 4907 | 14395 |
CasMVSNet | 4407 | 9995 |
Assessment of Damage | Orthophoto | Field Survey | 3D Models |
---|---|---|---|
G0 | 22.7% | 20.3% | 21.6% |
G1 | 37.7% | 37.7% | 36.7% |
G2 | 21.6% | 26.1% | 25.5% |
G3 | 13.2% | 10.1% | 11.1% |
G4 | 4.8% | 5.8% | 5.2% |
Total | 100% | 100% | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, Z.; Yang, Y.; Liu, J.; Jiang, S.; Pan, H.; Zhou, R.; Zhang, Y.; Han, Y.; Wang, J.; Yang, S.; et al. Enhancing 3D Reconstruction Model by Deep Learning and Its Application in Building Damage Assessment after Earthquake. Appl. Sci. 2022, 12, 9790. https://doi.org/10.3390/app12199790
Hong Z, Yang Y, Liu J, Jiang S, Pan H, Zhou R, Zhang Y, Han Y, Wang J, Yang S, et al. Enhancing 3D Reconstruction Model by Deep Learning and Its Application in Building Damage Assessment after Earthquake. Applied Sciences. 2022; 12(19):9790. https://doi.org/10.3390/app12199790
Chicago/Turabian StyleHong, Zhonghua, Yahui Yang, Jun Liu, Shenlu Jiang, Haiyan Pan, Ruyan Zhou, Yun Zhang, Yanling Han, Jing Wang, Shuhu Yang, and et al. 2022. "Enhancing 3D Reconstruction Model by Deep Learning and Its Application in Building Damage Assessment after Earthquake" Applied Sciences 12, no. 19: 9790. https://doi.org/10.3390/app12199790
APA StyleHong, Z., Yang, Y., Liu, J., Jiang, S., Pan, H., Zhou, R., Zhang, Y., Han, Y., Wang, J., Yang, S., & Zhong, C. (2022). Enhancing 3D Reconstruction Model by Deep Learning and Its Application in Building Damage Assessment after Earthquake. Applied Sciences, 12(19), 9790. https://doi.org/10.3390/app12199790