Spatiotemporal Variation of Land Surface Temperature Retrieved from FY-3D MERSI-II Data in Pakistan
Abstract
:1. Introduction
2. The Study Region and the Data
2.1. The Study Region
2.2. The FY-3D MERSI-II Data
2.3. The MODIS Data
3. Materials and Methods
3.1. The TFSW Algorithm for LST Retrieval
3.2. Calculation of the LSE for FY-3D MERSI-II
3.3. Comparison
3.4. Linear Analysis of LST Variation in Pakistan
3.5. Trend Analysis
3.6. Procedure of the Study
4. Results
4.1. Cross-Validation between MERSI-II, and MYD11 and MYD21 MODIS LST Products
4.2. Spatial Distribution of the Annual Mean LST
4.3. Trend Analysis of the Annual Mean LST
4.4. Spatial Distribution of Seasonal LST and Trend Analysis
4.5. Monthly Average Change Analysis
4.6. Long-Term Interannual Variations of LST
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Yao, R.; Wang, L.; Huang, X.; Gong, W.; Xia, X. Greening in Rural Areas Increases the Surface Urban Heat Island Intensity. Geophys. Res. Lett. 2019, 46, 2204–2212. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, K. Land Surface Temperature over Global Deserts: Means, Variability, and Trends. J. Geophys. Res. Atmos. 2016, 121, 14344–14357. [Google Scholar] [CrossRef]
- Bhattarai, N.; Mallick, K.; Stuart, J.; Vishwakarma, B.D.; Niraula, R.; Sen, S.; Jain, M. An Automated Multi-Model Evapotranspiration Mapping Framework Using Remotely Sensed and Reanalysis Data. Remote Sens. Environ. 2019, 229, 69–92. [Google Scholar] [CrossRef]
- Lu, N.; Liang, S.; Huang, G.; Qin, J.; Yao, L.; Wang, D.; Yang, K. Hierarchical Bayesian Space-Time Estimation of Monthly Maximum and Minimum Surface Air Temperature. Remote Sens. Environ. 2018, 211, 48–58. [Google Scholar] [CrossRef]
- Randazzo, G.; Cascio, M.; Fontana, M.; Gregorio, F.; Lanza, S.; Muzirafuti, A. Mapping of Sicilian Pocket Beaches Land Use/Land Cover with Sentinel-2 Imagery: A Case Study of Messina Province. Land 2021, 10, 678. [Google Scholar] [CrossRef]
- Randazzo, G.; Italiano, F.; Micallef, A.; Tomasello, A.; Cassetti, F.P.; Zammit, A.; D’Amico, S.; Saliba, O.; Cascio, M.; Cavallaro, F.; et al. WebGIS Implementation for Dynamic Mapping and Visualization of Coastal Geospatial Data: A Case Study of BESS Project. Appl. Sci. 2021, 11, 8233. [Google Scholar] [CrossRef]
- Du, W.; Qin, Z.; Fan, J.; Zhao, C.; Huang, Q.; Cao, K.; Abbasi, B. Land Surface Temperature Retrieval from Fengyun-3d Medium Resolution Spectral Imager Ii (Fy-3d Mersi-Ii) Data with the Improved Two-Factor Split-Window Algorithm. Remote Sens. 2021, 13, 72. [Google Scholar] [CrossRef]
- Tang, K.; Zhu, H.; Ni, P.; Li, R.; Fan, C. Retrieving Land Surface Temperature from Chinese FY-3D MERSI-2 Data Using an Operational Split Window Algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 6639–6651. [Google Scholar] [CrossRef]
- Wang, H.; Mao, K.; Mu, F.; Shi, J.; Yang, J.; Li, Z.; Qin, Z. A Split Window Algorithm for Retrieving Land Surface Temperature from FY-3D MERSI-2 Data. Remote Sens. 2019, 11, 2083. [Google Scholar] [CrossRef] [Green Version]
- Jin, M.; Li, J.; Wang, C.; Shang, R. A Practical Split-Window Algorithm for Retrieving Land Surface Temperature from Landsat-8 Data and a Case Study of an Urban Area in China. Remote Sens. 2015, 7, 4371–4390. [Google Scholar] [CrossRef]
- Ndossi, M.; Avdan, U. Inversion of Land Surface Temperature (LST) Using Terra ASTER Data: A Comparison of Three Algorithms. Remote Sens. 2016, 8, 993. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-Derived Land Surface Temperature: Current Status and Perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef] [Green Version]
- Jamro, S.; Dars, G.H.; Ansari, K.; Krakauer, N.Y. Spatio-Temporal Variability of Drought in Pakistan Using Standardized Precipitation Evapotranspiration Index. Appl. Sci. 2019, 9, 4588. [Google Scholar] [CrossRef] [Green Version]
- Haroon, M.A.; Zhang, J.; Yao, F. Drought Monitoring and Performance Evaluation of MODIS-Based Drought Severity Index (DSI) over Pakistan. Nat. Hazards 2016, 84, 1349–1366. [Google Scholar] [CrossRef]
- Adnan, S.; Ullah, K.; Gao, S.; Khosa, A.H.; Wang, Z. Shifting of Agro-Climatic Zones, Their Drought Vulnerability, and Precipitation and Temperature Trends in Pakistan. Int. J. Climatol. 2017, 37, 529–543. [Google Scholar] [CrossRef]
- Afzaal, M.; Haroon, M.A. Interdecadal Oscillations and the Warming Trend in the Area-Weighted Annual Mean Temperature of Pakistan. Pakistan J. Meteorol. 2009, 6, 13–19. [Google Scholar]
- Mumtaz, F.; Tao, Y.; De Leeuw, G.; Zhao, L.; Fan, C.; Elnashar, A.; Bashir, B.; Wang, G.; Li, L.L.; Naeem, S.; et al. Modeling Spatio-Temporal Land Transformation and Its Associated Impacts on Land Surface Temperature (LST). Remote Sens. 2020, 12, 2987. [Google Scholar] [CrossRef]
- Arshad, A.; Zhang, W.; Zaman, M.A.; Dilawar, A.; Sajid, Z. Monitoring the Impacts of Spatio-Temporal Land-Use Changes on the Regional Climate of City Faisalabad, Pakistan. Ann. GIS 2018, 25, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Saleem, M.S.; Ahmad, S.R.; Shafiq-Ur-Rehman; Javed, M.A. Impact Assessment of Urban Development Patterns on Land Surface Temperature by Using Remote Sensing Techniques: A Case Study of Lahore, Faisalabad and Multan District. Environ. Sci. Pollut. Res. 2020, 27, 39865–39878. [Google Scholar] [CrossRef] [PubMed]
- Pakistan Bureau of Statistics. Pakistan Statistical Year Book for Land Utilization. 2011. Available online: http://www.pbs.gov.pk/content/pakistan-statistical-year-book-2011 (accessed on 20 April 2016).
- Zaman, Q.U.; Rasul, G. Agro-Climatic Classification of Pakistan. Q. Sci. Vis. 2004, 9, 59–66. [Google Scholar]
- Mahessar, A.A.; Qureshi, A.L.; Dars, G.H.; Solangi, M.A. Climate change impacts on vulnerable Guddu and Sukkur Barrages in Indus River, Sindh. Sindh Univ. Res. J. 2017, 49, 137–142. [Google Scholar]
- Krakauer, N.Y.; Lakhankar, T.; Dars, G.H. Precipitation Trends over the Indus Basin. Climate 2019, 7, 116. [Google Scholar] [CrossRef] [Green Version]
- Rehman, S.; Shah, M.A. Rainfall Trends in Different Climate Zones of Pakistan. Pak. J. Meteorol. 2012, 9, 37–47. [Google Scholar]
- Abbasi, B.; Qin, Z.; Du, W.; Fan, J.; Zhao, C.; Hang, Q.; Zhao, S.; Li, S. An Algorithm to Retrieve Total Precipitable Water Vapor in the Atmosphere from FengYun 3D Medium Resolution Spectral Imager 2 (FY-3D MERSI-2) Data. Remote Sens. 2020, 12, 3469. [Google Scholar] [CrossRef]
- Hulley, G.; Veraverbeke, S.; Hook, S. Thermal-Based Techniques for Land Cover Change Detection Using a New Dynamic MODIS Multispectral Emissivity Product (MOD21). Remote Sens. Environ. 2014, 140, 755–765. [Google Scholar] [CrossRef]
- Li, H.; Sun, D.; Yu, Y.; Wang, H.; Liu, Y.; Liu, Q.; Du, Y.; Wang, H.; Cao, B. Evaluation of the VIIRS and MODIS LST Products in an Arid Area of Northwest China. Remote Sens. Environ. 2014, 142, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Duan, S.-B.; Li, Z.-L.; Li, H.; Göttsche, F.-M.; Wu, H.; Zhao, W.; Leng, P.; Zhang, X.; Coll, C. Validation of Collection 6 MODIS Land Surface Temperature Product Using in Situ Measurements. Remote Sens. Environ. 2019, 225, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Yao, R.; Wang, L.; Wang, S.; Wang, L.; Wei, J.; Li, J.; Yu, D. A Detailed Comparison of MYD11 and MYD21 Land Surface Temperature Products in Mainland China. Int. J. Digit. Earth 2020, 13, 1391–1407. [Google Scholar] [CrossRef]
- Li, H.; Li, R.; Yang, Y.; Cao, B.; Bian, Z.; Hu, T.; Du, Y.; Sun, L.; Liu, Q. Temperature-Based and Radiance-Based Validation of the Collection 6 MYD11 and MYD21 Land Surface Temperature Products Over Barren Surfaces in Northwestern China. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1794–1807. [Google Scholar] [CrossRef]
- Li, Z.; Petitcolin, F.; Zhang, R. A Physically Based Algorithm for Land Surface Emissivity Retrieval from Combined Mid-Infrared and Thermal Infrared Data. Sci. China Ser. E Technol. Sci. 2000, 43, 23–33. [Google Scholar] [CrossRef]
- Tang, B.-H. Nonlinear Split-Window Algorithms for Estimating Land and Sea Surface Temperatures From Simulated Chinese Gaofen-5 Satellite Data. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6280–6289. [Google Scholar] [CrossRef]
- Wan, Z.; Dozier, J. A Generalized Split-Window Algorithm for Retrieving Land-Surface Temperature from Space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z. New Refinements and Validation of the Collection-6 {MODIS} Land-Surface Temperature/Emissivity Product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Qin, Z.; Dall Olmo, G.; Karnieli, A.; Berliner, P. Derivation of Split Window Algorithm and Its Sensitivity Analysis for Retrieving Land Surface Temperature from {NOAA}-Advanced Very High Resolution Radiometer Data. J. Geophys. Res. Atmos. 2001, 106, 22655–22670. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jimenez-Muoz, J.C.; Soria, G.; Romaguera, M.; Guanter, L.; Moreno, J.; Plaza, A.; Martinez, P. Land Surface Emissivity Retrieval From Different {VNIR} and {TIR} Sensors. IEEE Trans. Geosci. Remote Sens. 2008, 46, 316–327. [Google Scholar] [CrossRef]
- Wang, H.; Yu, Y.; Yu, P.; Liu, Y. Land Surface Emissivity Product for NOAA JPSS and GOES-R Missions: Methodology and Evaluation. IEEE Trans. Geosci. Remote Sens. 2020, 58, 307–318. [Google Scholar] [CrossRef]
- Wang, C.; Duan, S.-B.; Zhang, X.; Wu, H.; Gao, M.-F.; Leng, P. An Alternative Split-Window Algorithm for Retrieving Land Surface Temperature from Visible Infrared Imaging Radiometer Suite Data. Int. J. Remote Sens. 2018, 40, 1640–1654. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of Changes in Meteorological Variables Using Mann-Kendall and Sen’s Slope Estimator Statistical Tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Wan, Z.; Zhang, Y.; Zhang, Q.; Li, Z.-L. Quality Assessment and Validation of the MODIS Global Land Surface Temperature. Int. J. Remote Sens. 2004, 25, 261–274. [Google Scholar] [CrossRef]
- Hewison, T.J.; Wu, X.; Yu, F.; Tahara, Y.; Hu, X.; Kim, D.; Koenig, M. GSICS Inter-Calibration of Infrared Channels of Geostationary Imagers Using Metop/IASI. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1160–1170. [Google Scholar] [CrossRef]
- Kalma, J.D.; McVicar, T.R.; McCabe, M.F. Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data. Surv. Geophys. 2008, 29, 421–469. [Google Scholar] [CrossRef]
- Khan, F.; Ali, S.; Mayer, C.; Ullah, H.; Muhammad, S. Climate Change and Spatio-Temporal Trend Analysis of Climate Extremes in the Homogeneous Climatic Zones of Pakistan during 1962–2019. PLoS ONE 2022, 17, e271626. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.H.B.; Shafqat, M.N.; Eqani, S.A.M.A.S.; Shah, S.T.A. Trends of Climate Change in the Upper Indus Basin Region, Pakistan: Implications for Cryosphere. Environ. Monit. Assess. 2019, 191, 51. [Google Scholar] [CrossRef] [PubMed]
- Rani, S.; Mal, S. Trends in Land Surface Temperature and Its Drivers over the High Mountain Asia. Egypt. J. Remote Sens. Sp. Sci. 2022, 25, 717–729. [Google Scholar] [CrossRef]
Instrument | Country | Launch Time | Sensor | Channel | Wavelength (µm) | Resolution |
---|---|---|---|---|---|---|
FY-3D | China | 2017 | MERSI-II | B24 B25 | 10.30–11.30 11.50–12.50 | 1000 m |
MODIS | USA | 1999 | Aqua | B31 B32 | 10.78–11.28 11.77–12.27 | 1000 m |
Region | MK Z-Score | Slope (°C/Year) | p-Value | ||
---|---|---|---|---|---|
Min | Max | Mean | |||
I | −4.97 | 3.57 | −1.86 ** | −0.013 | 0.05 |
II | −3.97 | 3.14 | 0.23 | 0.003 | 0.63 |
III | −3.28 | 3.58 | 0.23 | 0.003 | 0.61 |
IV | −3.39 | 3.51 | 0.07 | 0.001 | 0.71 |
V | −2.25 | 3.96 | 2.10 * | 0.019 | 0.10 |
Season | Region | Z-Score | Slope (°C) | p-Value |
---|---|---|---|---|
Spring | I | 0.93 | 0.03 | 0.40 |
II | −0.14 | −0.01 | 0.52 | |
III | −0.71 | −0.03 | 0.44 | |
IV | −0.19 | −0.01 | 0.70 | |
V | −0.95 | −0.06 | 0.30 | |
Summer | I | 1.22 | 0.04 | 0.32 |
II | 2.46 ** | 0.07 | 0.05 | |
III | 2.31 *** | 0.07 | 0.1 | |
IV | 2.22 ** | 0.08 | 0.05 | |
V | 3.00 * | 0.20 | 0.01 | |
Autumn | I | −1.06 ** | −0.08 | 0.05 |
II | 0.42 | 0.02 | 0.61 | |
III | 0.84 | 0.04 | 0.43 | |
IV | 0.84 | 0.03 | 0.44 | |
V | 1.93 * | 0.15 | 0.10 | |
Winter | I | 1.54 | 0.11 | 0.18 |
II | 1.42 | 0.12 | 0.20 | |
III | 2.03 ** | 0.17 | 0.05 | |
IV | 1.95 *** | 0.13 | 0.10 | |
V | 1.88 *** | 0.20 | 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbasi, B.; Qin, Z.; Du, W.; Fan, J.; Li, S.; Zhao, C. Spatiotemporal Variation of Land Surface Temperature Retrieved from FY-3D MERSI-II Data in Pakistan. Appl. Sci. 2022, 12, 10458. https://doi.org/10.3390/app122010458
Abbasi B, Qin Z, Du W, Fan J, Li S, Zhao C. Spatiotemporal Variation of Land Surface Temperature Retrieved from FY-3D MERSI-II Data in Pakistan. Applied Sciences. 2022; 12(20):10458. https://doi.org/10.3390/app122010458
Chicago/Turabian StyleAbbasi, Bilawal, Zhihao Qin, Wenhui Du, Jinlong Fan, Shifeng Li, and Chunliang Zhao. 2022. "Spatiotemporal Variation of Land Surface Temperature Retrieved from FY-3D MERSI-II Data in Pakistan" Applied Sciences 12, no. 20: 10458. https://doi.org/10.3390/app122010458
APA StyleAbbasi, B., Qin, Z., Du, W., Fan, J., Li, S., & Zhao, C. (2022). Spatiotemporal Variation of Land Surface Temperature Retrieved from FY-3D MERSI-II Data in Pakistan. Applied Sciences, 12(20), 10458. https://doi.org/10.3390/app122010458