Failure Assessment of Embankment Dam Elements: Case Study of the Pirot Reservoir System
Abstract
:1. Introduction
2. Theoretical Basis
2.1. Governing Equations of Filtration
2.2. Governing Equation of Strength Analysis
2.3. Shear Strength Reduction
2.4. Remaining Load-Bearing Capacity
3. About Zavoj Dam
- Dam crest elevation: 617.5 m asl,
- Maximum water level: 615.9 m asl,
- Operating water level: 612.5 m asl,
- Minimum operating level: 568.0 m asl,
- Elevation of the dam foundation: 531.5 m asl,
- Length of the dam in the crest: 250.0 m,
- Width of the dam in the crest: 10.0 m,
- Spillway gates 3 m × 9.0 m.
4. Numerical Model of the Zavoj Dam
4.1. Finite Element Model
- Dam body:
- ◦
- Clay core,
- ◦
- Multilayer sand filters,
- ◦
- Upstream dam body,
- ◦
- Downstream dam body,
- Grouting curtain,
- Concrete spillway,
- Surrounding rock mass.
4.2. Identification of the Structurally Critical (Weak) Elements
4.3. Material Properties
4.4. Loads and Boundary Conditions
4.5. Functional Assessment of Dam Elements
- Scenario 1: Damage to the grout curtain—loss of water resistance function due to effect of seismic loads;
- Scenario 2: Damage to the overflow section with sluice gates—functionality can be reduced due to occurrence of seismic loads;
- Scenario 3: Damage to the slope above the spillway chute—slope may lose stability as a result of seismic loads, reduce the capacity of the spillway, and prevent evacuation of water at high levels in the reservoir.
5. Results and Discussion
5.1. Analysis of Filtration
5.2. Analysis of Stability
5.2.1. Seismic Load in the Dam Axis Direction
5.2.2. Seismic Load in the Water Flow Direction
5.3. Hypothetical Scenarios Results
5.3.1. Damage of Grout Curtain (Scenario 1)
5.3.2. Overflow Strength Analysis (Scenario 2)
5.3.3. Analysis of Spillway Functionality (Scenario 3)
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haghighi, T.A.; Kløve, M.H. Development of a new index to assess river regime impacts after dam construction. Glob. Planet Change 2014, 122, 186–196. [Google Scholar] [CrossRef]
- Foster, M.; Fell, R.; Spannagle, M. The statistics of embankment dam failures and accidents. Can. Geotech. J. 2000, 37, 1000–1024. [Google Scholar] [CrossRef]
- Athani, S.S.; Solanki, C.H.; Dodagoudar, G.R.; Shukla, S.K. Finite-element analysis of strains in seepage barriers of the earth dam. Dams Reserv. 2019, 29, 87–96. [Google Scholar] [CrossRef]
- Hekmatzadeh, A.A.; Zarei, F.; Johari, A.; Torabi Haghighi, A. Reliability analysis of stability against piping and sliding in diversion dams, considering four cutoff wall configurations. Comput. Geotech. 2018, 98, 217–231. [Google Scholar] [CrossRef] [Green Version]
- Meehan, C.L.; Kumar, S.; Pando, M.A.; Coe, J.T.; Saliba, F.; Nassar, R.B.; Khoury, N.; Maalouf, Y. Internal Erosion and Piping Evolution in Earth Dams Using an Iterative Approach. In Proceedings of the Eighth International Conference on Case Histories in Geotechnical Engineering, Philadelphia, PA, USA, 24–27 March 2019; pp. 67–75. [Google Scholar]
- Xu, Z.; Yang, J.; Zhang, Q.; Yang, P. Reliability analysis for slope stability of embankment dam. In Proceedings of the 85th Annual Meeting of International Commission on Large Dams, Prague, Czech Republic, 3–7 July 2017. [Google Scholar]
- Yu, Y.; Xie, L.; Zhang, B. Stability of earth–rockfill dams: Influence of geometry on the three-dimensional effect. Comput. Geotech. 2005, 32, 326–339. [Google Scholar] [CrossRef]
- Huanga, M.; QinJia, C. Strength reduction FEM in stability analysis of soil slopes subjected to transient unsaturated seepage. Comput. Geotech. 2009, 36, 93–101. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Z.; Chang, Q.; Li, B.; Yang, Q. Stability and reinforcement analysis of rock slope based on elastic-plastic finite element method. J. Cent. South Univ. 2015, 22, 2739–2751. [Google Scholar] [CrossRef]
- Ziccarelli, M.; Rosone, M. Stability of Embankments Resting on Foundation Soils with a Weak Layer. Geosciences 2021, 11, 86. [Google Scholar] [CrossRef]
- Escuder-Bueno, I.; Mazzà, G.; Morales-Torres, A.; Castillo-Rodríguez, J. Computational Aspects of Dam Risk Analysis: Findings and Challenges. Engineering 2016, 2, 319–324. [Google Scholar] [CrossRef] [Green Version]
- Tasnim Nahar, T.; Cao, A.; Kim, D. Risk Assessment of Aged Concrete Gravity Dam Subjected to Material Deterioration under Seismic Excitation. Int. J. Concr. Struct. Mater. 2020, 14, 1–17. [Google Scholar]
- Wu, Z.; Xu, B.; Gu, C.; Li, Z. Comprehensive evaluation methods for dam service status. Sci. China Technol. Sci. 2012, 55, 2300–2312. [Google Scholar] [CrossRef]
- Kojić, M.; Slavković, R.; Živković, M.; Grujović, N. PAK-Finite Element Program for Linear and Nonlinear Structural Analysis and Heat Transfer; Faculty of Mechanical Engineering, University of Kragujevac: Kragujevac, Serbia, 1999. [Google Scholar]
- Kojić, M.; Slavković, R.; Živković, M.; Grujović, N. Finite Element Method 1, Linear Analysis; Faculty of Mechanical Engineering, University of Kragujevac: Kragujevac, Serbia, 1998. (In Serbian) [Google Scholar]
- Rakić, D.; Živković, M.; Milivojević, N.; Divac, D. Stability analysis of a concrete gravity dam using shear strength reduction method. Ann. Fac. Eng. Hunedoara—Int. J. Eng. 2017, 15, 117–122. [Google Scholar]
- Dawson, E.M.; Roth, W.H.; Drescher, A. Slope stability analysis by strength reduction. Géotechnique 1999, 49, 835–840. [Google Scholar] [CrossRef]
- PE Electric Power Industry of Serbia; Energoprojekt—Hidroinženjering AD. Built Design, General Report (In Serbian: Projekat Izvedenog Objekta, Opšti Izveštaj); Electric Power Industry of Serbia: Belgrade, Serbia, 2005. [Google Scholar]
- United Electric Power Industry Belgrade-Working Organization in the Process of Establishment HP Zavoj; SOUR Energoprojekt, RO Projektovanje, OOUR Hidroinženjering Belgrade. Hydropower Plant Zavoj, Main Design, Book XIII—Hydromechanic and Mechanic Equipment. Notebook 2—Hydromechanic Equipment, Mechanic Part; United Electric Power Industry: Belgrade, Serbia, 1988. (In Serbian) [Google Scholar]
- Tsompanakis, Y. Earthquake Return Period and Its Incorporation into Seismic Actions; Encyclopedia of Earthquake Engineering, Technical University of Crete: Crete, Greece, 2014. [Google Scholar]
- Radovanović, M.; Stevančević, M.; Milijašević, D.; Mukherjee, S.; Bjeljac, Ž. Astrophysical analysis of earthquake near Kraljevo (Serbia). J. Geogr. Inst. Jovan Cvijic SASA 2011, 61, 1–15. [Google Scholar]
- Mavroulis, S.; Lekkas, E.; Carydis, P. Liquefaction Phenomena Induced by the 26 November 2019, Mw = 6.4 Durrës (Albania) Earthquake and Liquefaction Susceptibility Assessment in the Affected Area. Geosciences 2021, 11, 215. [Google Scholar] [CrossRef]
- Markušić, S.; Stanko, D.; Penava, D.; Ivančić, I.; Bjelotomić Oršulić, O.; Korbar, T.; Sarhosis, V. Destructive M6.2 Petrinja Earthquake (Croatia) in 2020—Preliminary Multidisciplinary Research. Remote Sens. 2021, 13, 1095. [Google Scholar] [CrossRef]
- Ignjatović, L.; Stojković, M.; Ivetić, D.; Milašinović, M.; Milivojević, N. Quantifying Multi-Parameter Dynamic Resilience for Complex Reservoir Systems Using Failure Simulations: Case Study of the Pirot Reservoir System. Water 2021, 13, 3157. [Google Scholar] [CrossRef]
- King, L.M.; Simonovic, S.P.; Hartford, D.N.D. Using system dynamics simulation for assessment of hydropower system safety. Water Resour. Res. 2017, 53, 7148–7174. [Google Scholar] [CrossRef]
- Schrefler, B.; Zhan, X. A fully coupled model for water flow and airflow in deformable porous media. Water Resour. Res. 1993, 29, 155–167. [Google Scholar] [CrossRef]
- Lewis, R.W.; Schrefler, B.A. The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media; John Wiley & Sons Ltd.: Chichester, UK, 1998. [Google Scholar]
- Wolfgang, K. Groundwater Modelling: An Introduction with Sample Programs in Basic; Elsevier: New York, NY, USA, 1986. [Google Scholar]
- Bathe, K.J. Finite Element Procedures; Massachusetts Institute of Technology: Cambridge, MA, USA, 1996. [Google Scholar]
- Hoek, E. Strength of rock and rock masses. ISRM News J. 1994, 2, 4–16. [Google Scholar]
- Hoek, E.; Carranza-Torres, C.; Corkum, B. Hoek-Brown failure criterion—2002 edition. In Proceedings of the 5th North American Rock Mechanics Symposium and the 17th Tunnelling Association of Canada: NARMS-TAC 2002, Toronto, ON, Canada, 7–10 July 2002. [Google Scholar]
- Nian, T.; Jiang, J.; Wan, S.; Luan, M. Strength Reduction FE Analysis of the Stability of Bank Slopes Subjected to Transient Unsaturated Seepage. EJGE 2011, 16, 165–177. [Google Scholar]
- Rakić, D.; Živković, M.; Vulović, S.; Divac, D.; Slavković, R.; Milivojević, N. Embankment dam stability analysis using FEM. In Proceedings of the 3rd South-East European Conference on Computational Mechanics ECCOMAS and IACM Special Interest Conference, Kos Island, Greece, 12–14 June 2013. [Google Scholar]
- Potts, D.; Zdravković, L. Finite Element Analysis in Geotechnical Engineering: Finite Element Analysis in Geotechnical Engineering, Theory (Vol 1); Thomas Telford Publishing: London, UK, 1999. [Google Scholar]
- Reddy, J. An Introduction to Continuum Mechanics, with Application; Cambridge University Press: New York, NY, USA, 2008. [Google Scholar]
- Jaroslav Černi Water Institute. Innovative Project of Technical Monitoring of the Dam “Zavoj"; Jaroslav Černi Water Institute: Belgrade, Serbia, 2020. (In Serbian) [Google Scholar]
- Siemens PLM. Femap User Guide; Version 12; Siemens Product Lifecycle Management Software Inc.: Plano, TX, USA, 2018. [Google Scholar]
- Jaroslav Černi Water Institute. Dam “Vlasina”, 6—Report on Preliminary Analyzes Using Soft Models of Filtration and Stress-Strain Processes on the Dam; Jaroslav Černi Water Institute: Belgrade, Serbia, 2016. [Google Scholar]
- Rogers, D. Hoover Dam: Operational Milestones, Lessons Learned, and Strategic Import. In Proceedings of the Hoover Dam 75th Anniversary History Symposium, Las Vegas, NV, USA, 21–22 October 2012. [Google Scholar]
Material | k (m/s) | E (kPa) | ν (−) | γ (kN/m3) | c (kPa) | ϕ (°) | ψ (°) |
---|---|---|---|---|---|---|---|
Clay core | 1 × 10−10 | 1.42 × 105 | 0.45 | 17.0 | 15.0 | 22 | 0 |
Filter 1 | 1 × 10−6 | 6.86 × 105 | 0.3 | 18.0 | 88.7 | 26.3 | 26.3 |
Filter 2 | 1 × 10−5 | 7.13 × 105 | 0.3 | 20.0 | 57.2 | 22.1 | 22.1 |
Upstream rockfill | 1 × 10−3 | 2.16 × 105 | 0.3 | 21.0 | 88.7 | 26.3 | 26.3 |
Downstream rockfill | 1 × 10−3 | 2.16 × 105 | 0.3 | 21.0 | 57.2 | 22.1 | 22.1 |
Bedrock | 1 × 10−7 | 6.00 × 106 | 0.2 | 26.0 | 254.4 | 48.7 | 48.7 |
Grout curtain | 1 × 10−8 | 32.0 × 106 | 0.35 | 24.0 | 7160.0 | 35.4 | 35.4 |
Concrete | 1 × 10−9 | 32.0 × 106 | 0.2 | 24.0 | 7160.0 | 35.4 | 35.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rakić, D.; Stojković, M.; Ivetić, D.; Živković, M.; Milivojević, N. Failure Assessment of Embankment Dam Elements: Case Study of the Pirot Reservoir System. Appl. Sci. 2022, 12, 558. https://doi.org/10.3390/app12020558
Rakić D, Stojković M, Ivetić D, Živković M, Milivojević N. Failure Assessment of Embankment Dam Elements: Case Study of the Pirot Reservoir System. Applied Sciences. 2022; 12(2):558. https://doi.org/10.3390/app12020558
Chicago/Turabian StyleRakić, Dragan, Milan Stojković, Damjan Ivetić, Miroslav Živković, and Nikola Milivojević. 2022. "Failure Assessment of Embankment Dam Elements: Case Study of the Pirot Reservoir System" Applied Sciences 12, no. 2: 558. https://doi.org/10.3390/app12020558
APA StyleRakić, D., Stojković, M., Ivetić, D., Živković, M., & Milivojević, N. (2022). Failure Assessment of Embankment Dam Elements: Case Study of the Pirot Reservoir System. Applied Sciences, 12(2), 558. https://doi.org/10.3390/app12020558