Molecular Dynamics Simulation of Nanoscale Elastic Properties of Hydrated Na-, Cs-, and Ca-Montmorillonite
Abstract
:1. Introduction
2. Model and Methods
2.1. Molecular Models
2.2. Simulation Protocol
2.3. Methods for Calculating the Elastic Constants
3. Results and Discussion
3.1. Swelling and Thermodynamics Analysis
3.2. Nanoscale Elastic Properties
4. Conclusions
- (1)
- The basal spacing of all MMT systems increases from step to step in the initial crystalline swelling stage. While this step characteristic (plateau) disappears, the basal spacing shows approximately linear variation in the subsequent osmotic swelling stage. However, the quantitative values of the basal spacing for different compensation cationic MMTs are different, which is related to the ion radius of cations.
- (2)
- The nanoscale elastic properties of hydrated MMT show obvious anisotropy. The tensile and compressive strength (σ3) of MMT orthogonal to the mineral plane is much lower than the in-plane strengths (σ1 and σ2), and the hydration molecular layer mixed within MMT lamellae has certain shear strengths (τ4 and τ5). The order of strength values from large to small is the compressive strength, the tensile strength, and the shear strength, respectively.
- (3)
- The components of C33, C44, and C55 all fluctuate with the increase of interlayer water content, while the variation of the in-plane stiffness tensor components C11, C22, and C12, all decrease nonlinearly with the increase of water content. These components are mainly controlled by the bonding strength of mineral atoms and the geometric conformation of the hydrated MMT system. The C66 component reflects the shear of hydrated MMT along the direction perpendicular to the mineral plane, which is mainly controlled by the relative torsion of bonded atoms. Due to the increase of interlayer water contribution in the weak shear zone, C66 decreases continuously with the increase of interlayer water content. Young’s moduli all decrease nonlinearly with the increase of water content.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sposito, G. The Chemistry of Soils, 2nd ed.; Oxford University Press, Inc.: Cary, NC, USA, 2008. [Google Scholar]
- Bai, B.; Yang, G.C.; Li, T.; Yang, G.S. A thermodynamic constitutive model with temperature effect based on particle rearrangement for geomaterials. Mech. Mater. 2019, 139, 10318. [Google Scholar] [CrossRef]
- Frenkel, D.; Smit, B. Understanding Molecular Simulation, 2nd ed.; Academin Press: San Diego, CA, USA, 2002. [Google Scholar]
- Bai, B.; Rao, D.Y.; Chang, T.; Guo, Z.G. A nonlinear attachment-detachment model with adsorption hysteresis for suspension-colloidal transport in porous media. J. Hydrol. 2019, 578, 124080. [Google Scholar] [CrossRef]
- Gilmour, K.A.; Davie, C.T.; Gray, N. An indigenous iron-reducing microbial community from MX80 bentonite—A study in the framework of nuclear waste disposal. Appl. Clay Sci. 2021, 205, 106039. [Google Scholar] [CrossRef]
- Xu, H.; Zheng, L.G.; Rutqvist, J.; Birkholzer, J. Numerical study of the chemo-mechanical behavior of FEBEX bentonite in nuclear waste disposal based on the Barcelona expansive model. Comput. Geotech. 2021, 132, 103968. [Google Scholar] [CrossRef]
- Wu, P.X.; Tang, Y.N.; Wang, W.M.; Zhu, E.W.; Li, P.; Wu, J.H.; Dang, Z.; Wang, X.D. Effect of dissolved organic matter from Guangzhou landfill leachate on sorption of phenanthrene by Montmorillonite. J. Colloid Interf. Sci. 2011, 361, 618–627. [Google Scholar] [CrossRef]
- Ray, S.; Mishra, A.K.; Kalamdhad, A.S. Hydraulic performance, consolidation characteristics and shear strength analysis of bentonites in the presence of fly-ash, sewage sludge and paper-mill leachates for landfill application. J. Environ. Manag. 2022, 302, 113977. [Google Scholar] [CrossRef]
- Bai, B.; Zhou, R.; Cai, G.Q.; Hu, W.; Yang, G.C. Coupled thermo-hydro-mechanical mechanism in view of the soil particle rearrangement of granular thermodynamics. Comput. Geotech. 2021, 137, 104272. [Google Scholar] [CrossRef]
- Bai, B.; Nie, Q.K.; Zhang, Y.K.; Wang, X.L.; Hu, W. Cotransport of heavy metals and SiO2 particles at different temperatures by seepage. J. Hydrol. 2021, 597, 125771. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, Y.M.; Liu, H.; Ying, J.; Liu, C.T.; Shen, C.Y. Effects of interface interaction and microphase dispersion on the mechanical properties of PCL/PLA/MMT nanocomposites visualized by nanomechanical mapping. Compos. Sci. Technol. 2020, 190, 108048. [Google Scholar] [CrossRef]
- Shang, X.Y.; Zhou, G.Q.; Kuang, L.F.; Cai, W. Compressibility of deep clay in East China subjected to a wide range of consolidation stresses. Can. Geotech. J. 2015, 52, 244–250. [Google Scholar] [CrossRef]
- Prasad, M.; Kopycinska, M.; Rabe, U.; Arnold, W. Measurement of Young’s modulus of clay minerals using atomic force acoustic microscopy. Geophys. Res. Lett. 2002, 29, 1172. [Google Scholar] [CrossRef]
- Vanorio, T.; Prasad, M.; Nur, A. Elastic properties of dry clay mineral aggregates, suspensions and sandstones. Geophys. J. Int. 2003, 155, 319–326. [Google Scholar] [CrossRef] [Green Version]
- Kopycinska-Müller, M.; Prasad, M.; Rabe, U.; Arnold, W. Elastic properties of clay minerals determined by atomic force acoustic microscopy technique. Acoust. Imaging 2007, 28, 409–416. [Google Scholar]
- Yang, C.; Xiong, Y.Q.; Wang, J.F.; Li, Y.; Jiang, W.M. Mechanical characterization of shale matrix minerals using phase-positioned nanoindentation and nano-dynamic mechanical analysis. Int. J. Coal Geol. 2020, 229, 103571. [Google Scholar] [CrossRef]
- Ortega, J.A. Micropormechanical Modeling of Shale. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2010. [Google Scholar]
- Seo, Y.S.; Ichikawa, Y.; Kawamura, K. Stress-strain response of rock-forming minerals by molecular dynamics simulation. Mater. Sci. Res. Int. 1999, 5, 13–20. [Google Scholar] [CrossRef]
- Mitchell, J.K.; Soga, K. Fundamentals of Soil Behavior, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Mao, H.; Huang, Y.; Luo, J.Z.; Zhang, M.S. Molecular simulation of polyether amines intercalation into Na-montmorillonite interlayer as clay-swelling inhibitors. Appl. Clay Sci. 2021, 202, 105991. [Google Scholar] [CrossRef]
- Wei, P.C.; Zhang, L.L.; Zheng, Y.Y.; Diao, Q.F.; Zhuang, D.Y.; Yin, Z.Y. Nanoscale friction characteristics of hydrated montmorillonites using molecular dynamics. Appl. Clay Sci. 2021, 210, 106155. [Google Scholar] [CrossRef]
- Sato, H.; Yamagishi, A.; Kawamura, K. Molecular simulation for flexibility of a single clay layer. J. Phys. Chem. B 2001, 105, 7990–7997. [Google Scholar] [CrossRef]
- Manevitch, O.L.; Rutledge, G.C. Elastic properties of a single lamella of montmorillonite by molecular dynamics simulation. J. Phys. Chem. B 2004, 108, 1428–1435. [Google Scholar] [CrossRef]
- Chen, B.Q.; Evans, J.R.G. Elastic moduli of clay platelets. Scr. Mater. 2006, 54, 1581–1585. [Google Scholar] [CrossRef]
- Mazo, M.A.; Manevich, L.I.; Balabaev, N.K. Molecular dynamics simulation of thermo-mechanical properties of montmorillonite crystal. Nanotechnol. Russ. 2009, 4, 676–699. [Google Scholar] [CrossRef]
- Zartman, G.D.; Liu, H.; Akdim, B.; Pachter, R.; Heinz, H. Nanoscale tensile, shear, and failure properties of layered silicates as a function of cation density and stress. J. Phys Chem. C 2010, 114, 1763–1772. [Google Scholar] [CrossRef]
- Fu, Y.T.; Zartman, G.D.; Yoonessi, M.; Drummy, L.F.; Heinz, H. Bending of layered silicates on the nanometer scale: Mechanism, stored energy, and curvature limits. J. Phys Chem. C 2011, 115, 22292–22300. [Google Scholar] [CrossRef]
- Teich-McGoldrick, S.L.; Greathouse, J.A.; Cygan, R.T. Molecular dynamics simulations of structural and mechanical properties of muscovite: Pressure and temperature effects. J. Phys Chem. C 2012, 116, 15099–15107. [Google Scholar] [CrossRef]
- Ebrahimi, D.; Pellenq, R.J.-M.; Whittle, A.J. Nanoscale elastic properties of montmorillonite upon water adsorption. Langmuir 2012, 28, 16855–16863. [Google Scholar] [CrossRef] [PubMed]
- Carrier, B.; Vandamme, M.; Pellenq, R.J.-M.; van Damme, H. Elastic properties of swelling clay particles at finite temperature upon hydration. J. Phys Chem. C 2014, 118, 8933–8943. [Google Scholar] [CrossRef]
- Zheng, Y.; Zaoui, A. Mechanical behavior in hydrated Na-montmorillonite clay. Phys. A 2018, 505, 582–590. [Google Scholar] [CrossRef]
- Zhu, L.P.; Shens, W.Q.; Shao, J.F.; He, M.C. Insight of molecular simulation to better assess deformation and failure of clay-rich rocks in compression and extension. Int. J. Rock Mech. Min. 2021, 138, 104589. [Google Scholar] [CrossRef]
- Schmidt, S.R.; Katti, D.R.; Ghosh, P.; Katti, K.S. Evolution of mechanical response of sodium montmorillonite interlayer with increasing hydration by molecular dynamics. Langmuir 2005, 21, 8069–8076. [Google Scholar] [CrossRef]
- Suter, J.L.; Coveney, P.V.; Greenwell, H.C.; Thyveetil, M.A. Large-scale molecular dynamics study of montmorillonite clay: Emergence of undulatory fluctuations and determination of material properties. J. Phys. Chem. C 2007, 111, 8248–8259. [Google Scholar] [CrossRef]
- Liu, X.D.; Lu, X.C.; Wang, R.C.; Zhou, H.Q. Effects of layer-charge distribution on the thermodynamic and microscopic properties of Cs-smectite. Geochim. Et Cosmochim. Acta 2008, 72, 1837–1847. [Google Scholar] [CrossRef]
- Cygan, R.T.; Liang, J.J.; Kalinichev, A.G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J. Phys. Chem. B 2004, 108, 1255–1266. [Google Scholar] [CrossRef]
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
1 | 189.6710 ± 1.0140 | 81.7433 ± 0.8172 | 10.1290 ± 0.4701 | 1.2430 ± 0.3777 | −10.4597 ± 0.2771 | 0.4964 ± 0.4787 |
2 | 212.5464 ± 1.7814 | 8.4054 ± 0.4993 | 3.5123 ± 0.4520 | −3.4307 ± 0.3618 | 1.1526 ± 1.0715 | |
3 | 28.4335 ± 0.5057 | 0.3278 ± 0.2660 | 1.3468 ± 0.1654 | 0.1060 ± 0.2955 | ||
4 | 4.2630 ± 0.1881 | −0.6221 ± 0.1371 | −2.7480 ± 0.2758 | |||
5 | Symmetric | 5.4343 ± 0.1049 | 0.3864 ± 0.2236 | |||
6 | 45.4441 ± 0.6942 | |||||
Young’s modulus | 139.1605 | 174.2115 | 27.0289 | |||
Shear modulus | 2.1315 | 2.7172 | 22.7221 | |||
Poisson’s ratios | ||||||
0.3463 | 0.4335 | 0.3436 | 0.0667 | 0.1199 | 0.0186 | |
Bulk modulus | 70.1340 | |||||
Compressibility (1/TPa) | 38.6319 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuang, L.; Zhu, Q.; Shang, X.; Zhao, X. Molecular Dynamics Simulation of Nanoscale Elastic Properties of Hydrated Na-, Cs-, and Ca-Montmorillonite. Appl. Sci. 2022, 12, 678. https://doi.org/10.3390/app12020678
Kuang L, Zhu Q, Shang X, Zhao X. Molecular Dynamics Simulation of Nanoscale Elastic Properties of Hydrated Na-, Cs-, and Ca-Montmorillonite. Applied Sciences. 2022; 12(2):678. https://doi.org/10.3390/app12020678
Chicago/Turabian StyleKuang, Lianfei, Qiyin Zhu, Xiangyu Shang, and Xiaodong Zhao. 2022. "Molecular Dynamics Simulation of Nanoscale Elastic Properties of Hydrated Na-, Cs-, and Ca-Montmorillonite" Applied Sciences 12, no. 2: 678. https://doi.org/10.3390/app12020678
APA StyleKuang, L., Zhu, Q., Shang, X., & Zhao, X. (2022). Molecular Dynamics Simulation of Nanoscale Elastic Properties of Hydrated Na-, Cs-, and Ca-Montmorillonite. Applied Sciences, 12(2), 678. https://doi.org/10.3390/app12020678