Molecular Hydrogen: The Postharvest Use in Fruits, Vegetables and the Floriculture Industry
Abstract
:Featured Application
Abstract
1. Introduction
2. Application of H2 to Produce
3. Application of H2 to Postharvest Produce
4. Use of H2 for the Floriculture Industry
5. Biochemical Effects of H2
6. Conclusions and Future Perspectives
- Which food products would benefit from these treatments?
- How widely can these treatments be adopted by related industries, such as floriculture?
- Do we need to be concerned about safety: the gas is explosive, and donors leave by-products which may be toxic?
- What is the biochemical action of H2 in plants? Are there any negative effects being induced?
- How deeply into plant tissues do H2 treatments penetrate? Or are surface effects sufficient for the postharvest effects required?
- How long do the treatments last, and are repeated treatments required?
- Will cost benefit really make these treatments pragmatic?
- If transport moves over to H2 as fuel, can this be incorporated into the storage of plant materials as the H2 is being carried anyway?
- Can H2 treatment be used to decrease the levels of foodborne pathogens on fruit and vegetables?
- Can H2 be used in conjunction with current industry practices to increase effectiveness and facilitate adoption?
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ichihara, M.; Sobue, S.; Ito, M.; Ito, M.; Hirayama, M.; Ohno, K. Beneficial biological effects and the underlying mechanisms of molecular hydrogen-comprehensive review of 321 original articles. Med. GasRes. 2015, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Ge, L.; Yang, M.; Yang, N.N.; Yin, X.X.; Song, W.G. Molecular hydrogen: A preventive and therapeutic medical gas for various diseases. Oncotarget 2017, 8, 102653. [Google Scholar] [CrossRef] [Green Version]
- Ohno, K.; Ito, M.; Ichihara, M.; Ito, M. Molecular hydrogen as an emerging therapeutic medical gas for neurodegenerative and other diseases. Oxid. Med. Cell. Longev. 2012, 2012, 353152. [Google Scholar] [CrossRef] [Green Version]
- Ohta, S. Recent progress toward hydrogen medicine: Potential of molecular hydrogen for preventive and therapeutic applications. Curr. Pharm. Des. 2011, 17, 2241–2252. [Google Scholar]
- Russell, G.; Nenov, A.; Hancock, J. Oxy-hydrogen gas: The rationale behind its use as a novel and sustainable treatment for COVID-19 and other respiratory diseases. Eur. Med. J. 2021, 21-00027. [Google Scholar] [CrossRef]
- Alwazeer, D.; Liu, F.F.C.; Wu, X.Y.; LeBaron, T.W. Combating oxidative stress and inflammation in COVID-19 by molecular hydrogen therapy: Mechanisms and perspectives. Oxid. Med. Cell. Longev. 2021, 2021, 5513868. [Google Scholar] [CrossRef]
- FAO. Sustainable Development Goal: Indicator 12.3.1 Global Food Losses; Food and Agricultural Organization: Rome, Italy, 2022. [Google Scholar]
- Barrera, E.L.; Hertel, T. Global food waste across the income spectrum: Implications for food prices, production and resource use. Food Policy 2021, 98, 101874. [Google Scholar] [CrossRef]
- Nicastro, R.; Carillo, P. Food loss and waste prevention strategies from farm to fork. Sustainability 2021, 13, 5443. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Russell, G.; Hancock, J.T. Molecular hydrogen in agriculture. Planta 2021, 254, 56. [Google Scholar] [CrossRef]
- Li, C.; Gong, T.; Bian, B.; Liao, W. Roles of hydrogen gas in plants: A review. Funct. Plant Biol. 2018, 45, 783–792. [Google Scholar] [CrossRef]
- Alwazeer, D.; Çiğdem, A. Use of the Molecular Hydrogen in Agriculture Field. Turk. J. Agric.-Food Sci. Technol. 2022, 10, 14–20. [Google Scholar] [CrossRef]
- Cheng, P.; Wang, J.; Zhao, Z.; Kong, L.; Lou, W.; Zhang, T.; Jing, D.; Yu, J.; Shu, Z.; Huang, L.; et al. Molecular hydrogen increases quantitative and qualitative traits of rice grain in field trials. Plants 2021, 10, 2331. [Google Scholar] [CrossRef]
- Hu, H.; Zhao, S.; Li, P.; Shen, W. Hydrogen gas prolongs the shelf life of kiwifruit by decreasing ethylene biosynthesis. Postharvest Biol. Technol. 2018, 135, 123–130. [Google Scholar] [CrossRef]
- DiLisi, G.A. The Hindenburg disaster: Combining physics and history in the laboratory. Phys. Teach. 2017, 55, 268–273. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Zhao, X.; Lei, D.; Hu, S.; Shen, Z.; Shen, W.; Xu, X. Hydrogen-rich water pretreatment alters photosynthetic gas exchange, chlorophyll fluorescence, and antioxidant activities in heat-stressed cucumber leaves. Plant Growth Regul. 2017, 83, 69–82. [Google Scholar] [CrossRef]
- Yang, Y.; Li, B.; Liu, C.; Chuai, Y.; Lei, J.; Gao, F.; Cui, J.; Sun, D.; Cheng, Y.; Zhou, C.; et al. Hydrogen-rich saline protects immunocytes from radiation-induced apoptosis. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2012, 18, BR144. [Google Scholar] [CrossRef] [Green Version]
- Fan, W.; Zhang, Y.; Liu, S.; Li, X.; Li, J. Alleviation of copper toxicity in Daphnia magna by hydrogen nanobubble water. J. Hazard. Mater. 2020, 389, 122155. [Google Scholar] [CrossRef]
- Li, L.; Liu, Y.; Wang, S.; Zou, J.; Ding, W.; Shen, W. Magnesium hydride-mediated sustainable hydrogen supply prolongs the vase life of cut carnation flowers via hydrogen sulfide. Front. Plant Sci. 2020, 11, 595376. [Google Scholar] [CrossRef]
- Quinn, J.F.; Whittaker, M.R.; Davis, T.P. Delivering nitric oxide with nanoparticles. J. Control. Release 2015, 205, 190–205. [Google Scholar] [CrossRef]
- Masuda, S.; Mori, K.; Futamura, Y.; Yamashita, H. PdAg nanoparticles supported on functionalized mesoporous carbon: Promotional effect of surface amine groups in reversible hydrogen delivery/storage mediated by formic acid/CO2. ACS Catal. 2018, 8, 2277–2285. [Google Scholar] [CrossRef]
- Jain, I.P. Hydrogen the fuel for 21st century. Int. J. Hydrog. Energy 2009, 34, 7368–7378. [Google Scholar] [CrossRef]
- Hu, H.; Li, P.; Wang, Y.; Gu, R. Hydrogen-rich water delays postharvest ripening and senescence of kiwifruit. Food Chem. 2014, 156, 100–109. [Google Scholar] [CrossRef]
- Zhao, X.; Meng, X.; Li, W.; Cheng, R.; Wu, H.; Liu, P.; Ma, M. Effect of hydrogen-rich water and slightly acidic electrolyzed water treatments on storage and preservation of fresh-cut kiwifruit. J. Food Meas. Charact. 2021, 15, 5203–5210. [Google Scholar] [CrossRef]
- Dong, B.; Zhu, D.; Yao, Q.; Tang, H.; Ding, X. Hydrogen-rich water treatment maintains the quality of Rosa sterilis fruit by regulating antioxidant capacity and energy metabolism. LWT 2022, 161, 113361. [Google Scholar] [CrossRef]
- Dong, W.; Shi, L.; Li, S.; Xu, F.; Yang, Z.; Cao, S. Hydrogen-rich water delays fruit softening and prolongs shelf life of postharvest okras. Food Chem. 2022, 339, 133997. [Google Scholar] [CrossRef]
- Yun, Z.; Gao, H.; Chen, X.; Chen, Z.; Zhang, Z.; Li, T.; Qu, H.; Jiang, Y. Effects of hydrogen water treatment on antioxidant system of litchi fruit during the pericarp browning. Food Chem. 2021, 336, 127618. [Google Scholar] [CrossRef]
- Li, F.; Hu, Y.; Shan, Y.; Liu, J.; Ding, X.; Duan, X.; Zeng, J.; Jiang, Y. Hydrogen-rich water maintains the color quality of fresh-cut Chinese water chestnut. Postharvest Biol. Technol. 2022, 183, 111743. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, G.; Cheng, P.; Yan, X.; Li, Y.; Cheng, D.; Wang, R.; Chen, J.; Shen, W. Nitrite accumulation during storage of tomato fruit as prevented by hydrogen gas. Int. J. Food Prop. 2019, 22, 1425–1438. [Google Scholar] [CrossRef] [Green Version]
- Yun, Z.; Gao, H.; Chen, X.; Duan, X.; Jiang, Y. The role of hydrogen water in delaying ripening of banana fruit during postharvest storage. Food Chem. 2022, 373, 131590. [Google Scholar] [CrossRef]
- Lu, H.; Wu, B.; Wang, Y.; Liu, N.; Meng, F.; Hu, Z.; Zhao, R.; Zhao, H. Effects of hydrogen-rich water treatment on defense responses of postharvest tomato fruit to Botrytis cinerea. J. Henan Agric. Sci. 2017, 46I, 64–68. [Google Scholar]
- Alwazeer, D.; Özkan, N. Incorporation of hydrogen into the packaging atmosphere protects the nutritional, textural and sensorial freshness notes of strawberries and extends shelf life. J. Food Sci. Technol. 2022, 59, 3951–3964. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, J.; Hao, H.; Feng, Z.; Chen, M.; Wang, H.; Ye, M. Hydrogen-rich water increases postharvest quality by enhancing antioxidant capacity in Hypsizygus marmoreus. Amb Express 2017, 7, 221. [Google Scholar] [CrossRef]
- Yan, H.; Liu, Y.; Wu, Z.; Yi, Y.; Huang, X. Phylogenetic relationships and characterization of the complete chloroplast genome of Rosa sterilis. Mitochondrial DNA B Resour. 2021, 6, 1544–1546. [Google Scholar] [CrossRef]
- Zhu, L.S.; Shan, W.; Wu, C.J.; Wei, W.; Xu, H.; Lu, W.J.; Chen, J.Y.; Su, X.G.; Kuang, J.F. Ethylene-induced banana starch degradation mediated by an ethylene signaling component MaEIL2. Postharvest Biol. Technol. 2021, 181, 111648. [Google Scholar] [CrossRef]
- Ren, P.J.; Jin, X.; Liao, W.B.; Wang, M.; Niu, L.J.; Li, X.P.; Xu, X.T.; Zhu, Y.C. Effect of hydrogen-rich water on vase life and quality in cut lily and rose flowers. Hortic. Environ. Biotechnol. 2017, 58, 576–584. [Google Scholar] [CrossRef]
- Cai, M.; Du, H.M. Effects of hydrogen-rich water pretreatment on vase life of carnation (Dianthus caryophyllus) cut flowers. J. Shanghai Jiaotong Univ. (Agric. Sci.) 2015, 33, 41–45. [Google Scholar]
- Li, L.; Yin, Q.; Zhang, T.; Cheng, P.; Xu, S.; Shen, W. Hydrogen nanobubble water delays petal senescence and prolongs the vase life of cut carnation (Dianthus caryophyllus L.) flowers. Plants 2021, 10, 1662. [Google Scholar] [CrossRef]
- Su, J.; Nie, Y.; Zhao, G.; Cheng, D.; Wang, R.; Chen, J.; Zhang, S.; Shen, W. Endogenous hydrogen gas delays petal senescence and extends the vase life of lisianthus cut flowers. Postharvest Biol. Technol. 2019, 147, 148–155. [Google Scholar] [CrossRef]
- Huo, J.; Huang, D.; Zhang, J.; Fang, H.; Wang, B.; Wang, C.; Ma, Z.; Liao, W. Comparative proteomic analysis during the involvement of nitric oxide in hydrogen gas-improved postharvest freshness in cut lilies. Int. J. Mol. Sci. 2018, 19, 3955. [Google Scholar] [CrossRef] [Green Version]
- Bliznovska, E. Comfy Living: 19+ Surprising Floral Industry Statistics for 2022. Available online: https://comfyliving.net/floral-industry-statistics/ (accessed on 23 September 2022).
- Gupta, J.; Dubey, R.K. Factors affecting post-harvest life of flower crops. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 548–557. [Google Scholar]
- Aroca, A.; Gotor, C.; Romero, L.C. Hydrogen sulfide signaling in plants: Emerging roles of protein persulfidation. Front. Plant Sci. 2018, 9, 1369. [Google Scholar] [CrossRef] [Green Version]
- Hancock, J.T.; Whiteman, M. Hydrogen sulfide signaling: Interactions with nitric oxide and reactive oxygen species. Ann. N. Y. Acad. Sci. 2016, 1365, 5–14. [Google Scholar] [CrossRef]
- Hancock, J.T.; Russell, G. Downstream signalling from molecular hydrogen. Plants 2021, 10, 367. [Google Scholar] [CrossRef]
- Ohsawa, I.; Ishikawa, M.; Takahashi, K.; Watanabe, M.; Nishimaki, K.; Yamagata, K.; Katsura, K.; Katayama, Y.; Asoh, S.; Ohta, S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat. Med. 2007, 13, 688. [Google Scholar] [CrossRef]
- Hanaoka, T.; Kamimura, N.; Yokota, T.; Takai, S.; Ohta, S. Molecular hydrogen protects chondrocytes from oxidative stress and indirectly alters gene expressions through reducing peroxynitrite derived from nitric oxide. Med. Gas Res. 2011, 1, 18. [Google Scholar] [CrossRef] [Green Version]
- Richards, S.L.; Wilkins, K.A.; Swarbreck, S.M.; Anderson, A.A.; Habib, N.; Smith, A.G.; McAinsh, M.; Davies, J.M. The hydroxyl radical in plants: From seed to seed. J. Exp. Bot. 2015, 66, 37–46. [Google Scholar] [CrossRef]
- Speckmann, B.; Steinbrenner, H.; Grune, T.; Klotz, L.O. Peroxynitrite: From interception to signaling. Arch. Biochem. Biophys. 2016, 595, 153–160. [Google Scholar] [CrossRef]
- Penders, J.; Kissner, R.; Koppenol, W.H. ONOOH does not react with H2: Potential beneficial effects of H2 as an antioxidant by selective reaction with hydroxyl radicals and peroxynitrite. Free Radic. Biol. Med. 2014, 75, 191–194. [Google Scholar] [CrossRef]
- Kim, S.A.; Jong, Y.C.; Kang, M.S.; Yu, C.J. Antioxidation activity of molecular hydrogen via protoheme catalysis in vivo; an insight from ab initio calculations. J. Mol. Model. 2022, 28, 287. [Google Scholar]
- Hoy, J.A.; Hargrove, M.S. The structure and function of plant hemoglobins. Plant Physiol. Biochem. 2008, 46, 371–379. [Google Scholar] [CrossRef]
- Hancock, J.T.; LeBaron, T.W.; Russell, G. Molecular hydrogen: Redox reactions and possible biological interactions. React. Oxyg. Species 2021, 11, m17–m25. [Google Scholar] [CrossRef]
- Peck, H.D. The ATP-dependent reduction of sulfate with hydrogen in extracts of Desulfovibrio desulfuricans. Proc. Natl. Acad. Sci. USA 1959, 45, 701–708. [Google Scholar] [CrossRef]
- Hancock, J.T.; Hancock, T.H. Hydrogen gas, ROS metabolism, and cell signaling: Are hydrogen spin states important? React. Oxyg. Species 2018, 6, 389–395. [Google Scholar]
- Young, D.; Pedre, B.; Ezeriņa, D.; De Smet, B.; Lewandowska, A.; Tossounian, M.A.; Bodra, N.; Huang, J.; Astolfi Rosado, L.; Van Breusegem, F.; et al. Protein promiscuity in H2O2 signaling. Antioxid. Redox Signal. 2019, 30, 1285–1324. [Google Scholar] [CrossRef] [Green Version]
- Hess, D.T.; Stamler, J.S. Regulation by S-nitrosylation of protein post-translational modification. J. Biol. Chem. 2012, 287, 4411–4418. [Google Scholar] [CrossRef] [Green Version]
- Kolbert, Z.; Feigl, G.; Bordé, Á.; Molnár, Á.; Erdei, L. Protein tyrosine nitration in plants: Present knowledge, computational prediction and future perspectives. Plant Physiol. Biochem. 2017, 113, 56–63. [Google Scholar] [CrossRef]
- Filipovic, M.R.; Zivanovic, J.; Alvarez, B.; Banerjee, R. Chemical biology of H2S signaling through persulfidation. Chem. Rev. 2018, 118, 1253–1337. [Google Scholar] [CrossRef]
- Doughert, J.H., Jr. Use of H2 as an inert gas during diving: Pulmonary function during H2-O2 breathing at 7. 06 ATA. Aviat. Space Environ. Med. 1976, 47, 618–626. [Google Scholar] [PubMed]
- Hu, H.; Li, P.; Shen, W. Preharvest application of hydrogen-rich water not only affects daylily bud yield but also contributes to the alleviation of bud browning. Sci. Hortic. 2021, 287, 110267. [Google Scholar] [CrossRef]
Biological Material Treated | Manner of Treatment | Effects Seen/Comments | Reference(s) |
---|---|---|---|
Kiwifruit | HRW | Delayed ripening and senescence | [23] |
Kiwifruit | H2 fumigation | Better fruit, mediated by ethylene metabolism | [14] |
Kiwifruit | (HRW) (and with slightly acidic electrolyzed water (SAEW)) | Reduced loss of antioxidants such as flavonoids, and delayed chlorophyll loss. Reduced oxidative stress markers. | [24] |
Rosa sterilis | HRW | Better fruit, mediated by ROS and energy metabolism | [25] |
Okras | HRW | Delayed fruit softening, better cell wall maintenance | [26] |
Litchi (Lychee) | HRW | Reduced pericarp browning, lower oxidative stress indicators | [27] |
Chinese water chestnut | HRW | Less tissue yellowing, reduced oxidative stress, effects on the phenylpropanoid pathway | [28] |
Tomato | HRW or H2 fumigation | Reduced nitrite accumulation, with relevant enzymes affected | [29] |
Banana | HRW | Delayed ripening, effects mediated by ethylene metabolism | [30] |
Tomato | HRW | Altered defense responses, increased polyphenol oxidase (PPO) activity and NO | [31] |
Strawberry | Gas in packaging | Better storage, lower fruit oxidation | [32] |
Hypsizygus marmoreus | HRW | Better storage mediated by antioxidants | [33] |
Flowers Treated | Manner of Treatment | Effects Seen/Comments | Reference(s) |
---|---|---|---|
Lily (Lilium spp.) and Rose (Rosa hybrid L.) | HRW | Better vase life, increased antioxidants | [36] |
Carnation (Dianthus caryophyllus) | HRW | Details not known | [37] |
Carnation (Dianthus caryophyllus) | MgH2 as a donor | Better flower life, mediated by H2S and altered gene expression | [19] |
Carnation (Dianthus caryophyllus) | HNW | Prolonged flower life, lower oxidative stress and senescence-enzyme activities | [38] |
Lisianthus (Eustoma grandiflorum) | HRW | Better flower maintenance mediated by redox status | [39] |
Lily (Lilium “Manissa”) | HRW | Beneficial effects, mediated by NO and ATP synthase | [40] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hancock, J.T.; Russell, G.; Stratakos, A.C. Molecular Hydrogen: The Postharvest Use in Fruits, Vegetables and the Floriculture Industry. Appl. Sci. 2022, 12, 10448. https://doi.org/10.3390/app122010448
Hancock JT, Russell G, Stratakos AC. Molecular Hydrogen: The Postharvest Use in Fruits, Vegetables and the Floriculture Industry. Applied Sciences. 2022; 12(20):10448. https://doi.org/10.3390/app122010448
Chicago/Turabian StyleHancock, John T., Grace Russell, and Alexandros Ch. Stratakos. 2022. "Molecular Hydrogen: The Postharvest Use in Fruits, Vegetables and the Floriculture Industry" Applied Sciences 12, no. 20: 10448. https://doi.org/10.3390/app122010448
APA StyleHancock, J. T., Russell, G., & Stratakos, A. C. (2022). Molecular Hydrogen: The Postharvest Use in Fruits, Vegetables and the Floriculture Industry. Applied Sciences, 12(20), 10448. https://doi.org/10.3390/app122010448