Key Factors Determining the Behavior of Pathogens in Dry-Cured Ham after High Pressure Processing
Abstract
:1. Introduction
2. Material and Methods
2.1. Bacterial Strains
2.2. Experimental Designs and Preparation of the Samples
2.3. HPP and Subsequent Storage of DCH
2.4. Microbiological Analysis
2.5. Statistical Analysis and Mathematical Modeling of the Pathogen Behavior during the Storage of the DCH after the HPP
2.5.1. Estimation of Growth/No-Growth Behavior
2.5.2. Non-Thermal Inactivation Kinetic Parameters during the Storage of DCH after HPP
2.5.3. Estimation of Growth Kinetic Parameters during the Storage of DCH after HPP
3. Results and Discussion
3.1. Salmonella Behavior in DCH during Storage after HPP
3.2. L. monocytogenes Behavior in DCH during Storage after HPP: Growth/No Growth
3.2.1. L. monocytogenes No-Growth Conditions: Survival and Inactivation during Storage
3.2.2. L. monocytogenes Growth during the Storage of DCH
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jung, S.; Tonello-Samson, C. High hydrostatic pressure food processing: Potential and limitations. In Alternatives to Conventional Food Processing, 2nd ed.; Green Chemistry Series; Proctor, A., Ed.; The Royal Society of Chemistry: London, UK, 2018; pp. 251–315. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) N° 2073/2005 of 15th November 2005 on Microbiological Criteria for Foodstuffs. Off. J. Eur. Union 2005, L338, 1–26. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32005R2073&from=EN (accessed on 17 November 2022).
- FSIS. FSIS Compliance Guideline: Controlling Listeria monocytogenes in Post-Lethality Exposed Ready-To-Eat Meat and Poultry Products; Food Safety and Inspection Service, U.S. Department of Agriculture: Washington, DC, USA, 2014. Available online: https://www.fsis.usda.gov/sites/default/files/import/Controlling-Lm-RTE-Guideline.pdf (accessed on 17 November 2022).
- Ng, W.F.; Langlois, B.E.; Moody, W.G. Fate of selected pathogens in vacuum-packaged dry-cured (country-style) ham slices stored at 2 and 25 °C. J. Food Prot. 1997, 60, 1541–1547. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, A.E.; Harrison, M.A.; Rose-Morrow, R.; Lyon, C.E. Validation of dry cured ham process for control of pathogens. J. Food Sci. 2001, 66, 1373–1379. [Google Scholar] [CrossRef]
- Serra-Castelló, C.; Jofré, A.; Garriga, M.; Bover-Cid, S. Modeling and designing a Listeria monocytogenes control strategy for dry-cured ham taking advantage of water activity and storage temperature. Meat Sci. 2020, 165, 108131. [Google Scholar] [CrossRef] [PubMed]
- Stollewerk, K.; Jofré, A.; Comaposada, J.; Arnau, J.; Garriga, M. Food safety in fast drying of dry-cured meat products: High pressure and Na Cl-free processing implementation. Fleischwirtschaft 2013, 93, 109–113. [Google Scholar]
- Hereu, A. Les Altes Pressions i la Bioconservació Com a Estratègies de Control de Listeria monocytogenes en Productes Carnis Llestos per al Consum. Assajos D’inoculació i Modelització Matemàtica; Univerisitat de Girona: Girona, Spain, 2014; Available online: https://dugi-doc.udg.edu/bitstream/handle/10256/9696/tahs.pdf;sequence=1 (accessed on 17 November 2022).
- Bover-Cid, S.; Belletti, N.; Aymerich, T.; Garriga, M. Modeling the protective effect of aw and fat content on the high pressure resistance of Listeria monocytogenes in dry-cured ham. Food Res. Int. 2015, 75, 194–199. [Google Scholar] [CrossRef]
- Garriga, M.; Grèbol, N.; Aymerich, M.T.; Monfort, J.M.; Hugas, M. Microbial inactivation after high-pressure processing at 600 MPa in commercial meat products over its shelf life. Innov. Food Sci. Emerg. Technol. 2004, 5, 451–457. [Google Scholar] [CrossRef]
- Jofré, A.; Aymerich, T.; Grèbol, N.; Garriga, M. Efficiency of high hydrostatic pressure at 600MPa against food-borne microorganisms by challenge tests on convenience meat products. LWT Food Sci. Technol. 2009, 42, 924–928. [Google Scholar] [CrossRef]
- Bover-Cid, S.; Belletti, N.; Aymerich, T.; Garriga, M. Modelling the impact of water activity and fat content of dry-cured ham on the reduction of Salmonella enterica by high pressure processing. Meat Sci. 2017, 123, 120–125. [Google Scholar] [CrossRef]
- McKellar, R.C.; Lu, X. (Eds.) Modelling Microbial Responses in Food, 1st ed.; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar] [CrossRef]
- Zwietering, M.H.; Wijtzes, T.; Rombouts, F.M.; van’t Riet, K. A decision support system for prediction of microbial spoilage in foods. J. Ind. Microbiol. 1993, 12, 324–329. [Google Scholar] [CrossRef]
- Le Marc, Y.; Huchet, V.; Bourgeois, C.M.; Guyonnet, J.P.; Mafart, P.; Thuault, D. Modelling the growth kinetics of Listeria as a function of temperature, pH and organic acid concentration. Int. J. Food Microbiol. 2002, 73, 219–237. [Google Scholar] [CrossRef]
- Hereu, A.; Bover-Cid, S.; Garriga, M.; Aymerich, T. High hydrostatic pressure and biopreservation of dry-cured ham to meet the Food Safety Objectives for Listeria monocytogenes. Int. J. Food Microbiol. 2012, 154, 107–112. [Google Scholar] [CrossRef]
- European Reference Laboratory of L. monocytogenes - ANSES (Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail). Technical Guidance Document on Challenge Tests and Durability Studies for Assessing Shelf-Life of Ready-To-Eat Foods Related to Listeria monocytogenes. 2021. Available online: https://food.ec.europa.eu/system/files/2021-07/biosafety_fh_mc_tech-guide-doc_listeria-in-rte-foods_en_0.pdf (accessed on 17 November 2022).
- ISO 20976-1:2019; Microbiology of the Food Chain-Requirements and Guidelines for Conducting Challenge Tests of Food and Feed Products-Part 1: Challenge Tests to Study Growth Potential, Lag Time and Maximum Growth Rate. International Organisation for Standardization (ISO): Geneva, Switzerland, 2019.
- Jofré, A.; Latorre-Moratalla, M.L.; Garriga, M.; Bover-Cid, S. Domestic refrigerator temperatures in Spain: Assessment of its impact on the safety and shelf-life of cooked meat products. Food Res. Int. 2019, 126, 108578. [Google Scholar] [CrossRef]
- Aymerich, T.; Jofré, A.; Garriga, M.; Hugas, M. Inhibition of Listeria monocytogenes and Salmonella by natural antimicrobials and high hydrostatic pressure in sliced cooked ham. J. Food Prot. 2005, 68, 173–177. [Google Scholar] [CrossRef]
- R Core Team. R: A language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Coroller, L.; Kan-King-Yu, D.; Leguerinel, I.; Mafart, P.; Membré, J.-M. Modelling of growth, growth/no-growth interface and nonthermal inactivation areas of Listeria in foods. Int. J. Food Microbiol. 2012, 152, 139–152. [Google Scholar] [CrossRef]
- Rosso, L.; Lobry, J.R.; Bajard, S.; Flandrois, J.P. Convenient model to describe the combined effects of temperature and pH on microbial growth. Appl. Environ. Microbiol. 1995, 61, 610–616. [Google Scholar] [CrossRef] [Green Version]
- Stollewerk, K.; Jofré, A.; Comaposada, J.; Arnau, J.; Garriga, M. NaCl-free processing, acidification, smoking and high pressure: Effects on growth of Listeria monocytogenes and Salmonella enterica in QDS processed dry-cured ham. Food Control 2014, 35, 56–64. [Google Scholar] [CrossRef]
- International Commission of Microbiological Specifications for Foods (ICMSF). Microorganisms in Foods 5. In Microbiological Specifications of Food Pathogens; Roberts, T.A., Baird-Parker, A.C., Tompkin, R.B., Eds.; Blackie Academic & Professional: London, UK, 1996. [Google Scholar]
- Hayman, M.M.; Kouassi, G.K.; Anantheswaran, R.C.; Floros, J.D.; Knabel, S.J. Effect of water activity on inactivation of Listeria monocytogenes and lactate dehydrogenase during high pressure processing. Int. J. Food Microbiol. 2008, 124, 21–26. [Google Scholar] [CrossRef]
- Muñoz-Cuevas, M.; Guevara, L.; Aznar, A.; Martínez, A.; Periago, P.M.; Fernández, P.S. Characterisation of the resistance and the growth variability of Listeria monocytogenes after high hydrostatic pressure treatments. Food Control 2013, 29, 409–415. [Google Scholar] [CrossRef]
- Couvert, O.; Pinon, A.; Bergis, H.; Bourdichon, F.; Carlin, F.; Cornu, M.; Denis, C.; Gnanou Besse, N.; Guillier, L.; Jamet, E.; et al. Validation of a stochastic modelling approach for Listeria monocytogenes growth in refrigerated foods. Int. J. Food Microbiol. 2010, 144, 236–242. [Google Scholar] [CrossRef]
- Zuliani, V.; Lebert, I.; Augustin, J.-C.; Garry, P.; Vendeuvre, J.-L.; Lebert, A. Modelling the behaviour of Listeria monocytogenes in ground pork as a function of pH, water activity, nature and concentration of organic acid salts. J. Appl. Microbiol. 2007, 103, 536–550. [Google Scholar] [CrossRef] [PubMed]
- Coroller, L.; Jeuge, S.; Couvert, O.; Christieans, S.; Ellouze, M. Extending the gamma concept to non-thermal inactivation: A dynamic model to predict the fate of Salmonella during the dried sausages process. Food Microbiol. 2015, 45, 266–275. [Google Scholar] [CrossRef] [PubMed]
Trial | DCH Characteristics | HPP (MPa) | Concentration after HPP (log cfu/g) a | Observed Behavior during Storage b | Predicted G/NG (Γ) d | Inactivation Kinetic Parameters e | Goodness of Fit f | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
aw | Fat (%) | δ (Days) | p | n | par | RMSE | |||||
1 | 0.870 | 30 | 600 | 3.71 ± 0.04 | I | 0 (NG) | 3.03 ± 0.10 | 1.80 ± 0.13 | 7 | 2 | 0.091 |
2 | 0.890 | 18 | 450 | 3.55 ± 0.17 | I | 0 (NG) | 2.90 ± 0.76 | 0.95 ± 0.25 | 9 | 2 | 0.538 |
3 | 0.890 | 42 | 450 | 2.92 ± 0.11 | I | 0 (NG) | 1.48 ± 0.35 | 0.49 ± 0.08 | 7 | 2 | 0.215 |
4 | 0.890 | 18 | 750 | 2.69 ± 0.79 | I c | 0 (NG) | - | - | - | - | - |
5 | 0.890 | 42 | 750 | 0.90 ± 0.43 | I c | 0 (NG) | - | - | - | - | - |
6 | 0.911 | 50 | 600 | 1.66 ± 0.26 | I c | 0 (NG) | - | - | - | - | - |
7 | 0.915 | 30 | 600 | 1.39 ± 0.55 | I c | 0 (NG) | - | - | - | - | - |
8 | 0.915 | 30 | 600 | 1.80 ± 0.14 | I c | 0 (NG) | - | - | - | - | - |
9 | 0.919 | 30 | 347 | 5.76 ± 0.17 | I | 0 (NG) | 2.43 ± 1.07 | 0.38 ± 0.06 | 16 | 2 | 0.365 |
10 | 0.919 | 30 | 600 | 2.78 ± 0.07 | I c | 0 (NG) | - | - | - | - | - |
11 | 0.919 | 30 | 600 | 3.03 ± 0.20 | I c | 0 (NG) | - | - | - | - | - |
12 | 0.920 | 10 | 600 | 2.57 ± 0.22 | I c | 0 (NG) | - | - | - | - | - |
13 | 0.920 | 30 | 600 | 2.72 ± 0.22 | I c | 0 (NG) | - | - | - | - | - |
14 | 0.920 | 30 | 600 | 2.38 ± 0.66 | I c | 0 (NG) | - | - | - | - | - |
15 | 0.920 | 30 | 852 | <DL | K | 0 (NG) | - | - | - | - | - |
16 | 0.940 | 30 | 300 | 7.10 ± 0.63 | I | 0 (NG) | 10.76 ± 4.31 | 0.44 ± 0.14 | 24 | 2 | 0.643 |
17 | 0.940 | 30 | 450 | 4.74 ± 0.03 | I | 0 (NG) | 4.56 ± 1.23 | 0.41 ± 0.06 | 26 | 2 | 0.356 |
18 | 0.940 | 30 | 600 | <DL | K | 0 (NG) | - | - | - | - | - |
19 | 0.940 | 30 | 750 | <DL | K | 0 (NG) | - | - | - | - | - |
20 | 0.950 | 18 | 450 | 4.64 ± 0.03 | I | 0 (NG) | 8.18 ± 0.96 | 0.56 ± 0.04 | 16 | 2 | 0.186 |
21 | 0.950 | 42 | 450 | 3.70 ± 0.15 | I | 0 (NG) | 4.42 ± 0.98 | 0.52 ± 0.07 | 13 | 2 | 0.316 |
22 | 0.950 | 18 | 750 | <DL | K | 0 (NG) | - | - | - | - | - |
23 | 0.950 | 42 | 750 | <DL | K | 0 (NG) | - | - | - | - | - |
24 | 0.960 | 30 | 300 | 6.48 ± 0.05 | I | 0 (NG) | 46.06 ± 5.97 | 1.24 ± 0.43 | 25 | 2 | 0.409 |
25 | 0.960 | 30 | 450 | 4.40 ± 0.01 | I | 0 (NG) | 0.59 ± 0.23 | 0.31 ± 0.03 | 26 | 2 | 0.336 |
26 | 0.960 | 30 | 600 | <DL | K | 0 (NG) | - | - | - | - | - |
27 | 0.960 | 30 | 600 | <DL | K | 0 (NG) | - | - | - | - | - |
28 | 0.960 | 30 | 750 | <DL | K | 0 (NG) | - | - | - | - | - |
29 | 0.980 | 30 | 300 | 6.30 ± 0.01 | I | 2.16 × 10−4 (G) | 26.75 ± 1.98 | 1.00 ± 0.15 | 24 | 2 | 0.267 |
30 | 0.980 | 30 | 450 | 3.63 ± 0.09 | I | 2.16 × 10−4 (G) | 3.48 ± 1.66 | 0.33 ± 0.09 | 22 | 2 | 0.457 |
31 | 0.980 | 30 | 600 | <DL | K | 2.16 × 10−4 (G) | - | - | - | - | - |
32 | 0.980 | 30 | 750 | <DL | K | 2.16 × 10−4 (G) | - | - | - | - | - |
Trial | DCH Characteristics | HPP (MPa) | Concentration after HPP (log cfu/g) a | Observed Behavior during Storage b | Predicted G/NG (Γ) d | Inactivation Parameters e | Growth Parameters f | Goodness of Fit f,g | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
aw | Fat (%) | δ (Days) | p | λ (d) | μmax (h−1) | MGP (log) | n | par | RMSE | |||||
33 | 0.870 | 30 | 600 | 1.78 ± 0.17 | S | 0 (NG) | - | - | - | - | - | - | - | - |
34 | 0.890 | 18 | 450 | 4.34 ± 0.05 | I | 0 (NG) | 15.74 ± 2.51 | 0.52 ± 0.08 | - | - | - | 15 | 2 | 0.251 |
35 | 0.890 | 42 | 450 | 4.69 ± 0.06 | I | 0 (NG) | 40.28 ± 3.55 | 0.85 ± 0.15 | - | - | - | 15 | 2 | 0.191 |
36 | 0.890 | 18 | 750 | <DL | K | 0 (NG) | - | - | - | - | - | - | - | - |
37 | 0.890 | 42 | 750 | <DL | K | 0 (NG) | - | - | - | - | - | - | - | - |
38 | 0.911 | 50 | 600 | <DL | K | 0 (NG) | - | - | - | - | - | - | - | - |
39 | 0.915 | 30 | 600 | 1.57 ± 0.38 | I c | 0 (NG) | - | - | - | - - | - - | - | - | - |
40 | 0.915 | 30 | 600 | 1.81 ± 0.05 | I c | 0 (NG) | - | |||||||
41 | 0.919 | 30 | 347 | 5.83 ± 0.26 | I | 0 (NG) | 37.57 ± 2.92 | 0.96 ± 0.19 | - | - | - | 14 | 2 | 0.227 |
42 | 0.919 | 30 | 600 | 1.96 ± 0.17 | I | 0 (NG) | 41.84 ± 7.79 | 1.35 ± 0.80 ns | - | - - | - - | 15 | 2 | 0.501 |
43 | 0.919 | 30 | 600 | 2.22 ± 0.12 | I | 0 (NG) | - | |||||||
44 | 0.920 | 10 | 600 | <DL | K | 0 (NG) | - | - | - | - | - | - | - | - |
45 | 0.920 | 30 | 600 | 1.68 ± 0.17 | I c | 0 (NG) | - | - | - | - - | - - | - | - | - |
46 | 0.920 | 30 | 600 | 1.15 ± 0.21 | I c | 0 (NG) | - | |||||||
47 | 0.920 | 30 | 852 | <DL | K | 0 (NG) | - | - | - | - | - | - | - | - |
48 | 0.940 | 30 | 300 | 6.81 ± 0.12 | S | 0 (NG) | - | - | - | - | - | - | - | - |
49 | 0.940 | 30 | 450 | 5.80 ± 0.02 | I | 0 (NG) | 4.86 ± 1.17 | 0.40 ± 0.05 | - | - | - | 24 | 2 | 0.348 |
50 | 0.940 | 30 | 600 | <DL | K | 0 (NG) | - | - | - | - | - | - | - | - |
51 | 0.940 | 30 | 750 | <DL | K | 0 (NG) | - | - | - | - | - | - | - | - |
52 | 0.950 | 18 | 450 | 5.61 ± 0.07 | I | 3.14 × 10−3 (G) | 0.81 ± 0.53 | 0.27 ± 0.05 | - | - | - | 15 | 2 | 0.432 |
53 | 0.950 | 42 | 450 | 2.15 ± 0.21 | I | 3.14 × 10−3 (G) | 61.44 ± 28.77 | 1.18 ± 1.38 ns | - | - | - | 15 | 2 | 0.792 |
54 | 0.950 | 18 | 750 | <DL | K | 3.14 × 10−3 (G) | - | - | - | - | - | - | - | - |
55 | 0.950 | 42 | 750 | <DL | K | 3.14 × 10−3 (G) | - | - | - | - | - | - | - | - |
56 | 0.960 | 30 | 300 | 7.02 ± 0.05 | G | 1.34 × 10−2 (G) | - | - | 5.76 ± 1.55 | 0.011 ± 0.003 | 1.34 ± 0.08 | 26 | 3 | 0.142 |
57 | 0.960 | 30 | 450 | 2.10 ± 1.70 | G | 1.34 × 10−2 (G) | - | - | 6.00 ± 2.97 | 0.038 ± 0.013 | 4.80 ± 0.40 | 24 | 3 | 1.644 |
58 | 0.960 | 30 | 600 | <DL | G | 1.34 × 10−2 (G) | - | - | NA | 0.022 ± 0.003 | 7.05 ± 0.31 | 28 | 2 | 0.866 |
59 | 0.960 | 30 | 600 | <DL | G | 1.34 × 10−2 (G) | ||||||||
60 | 0.960 | 30 | 750 | <DL | G | 1.34 × 10−2 (G) | - | - | NA | 0.088 ± 7.541 × 10 3 ns | 6.20 ± 0.71 | 12 | 2 | 1.560 |
61 | 0.980 | 30 | 300 | 6.81 ± 0.10 | G | 2.78 × 10−2 (G) | - | - | NA | 0.021 ± 0.003 | 1.36 ± 0.04 | 22 | 2 | 0.163 |
62 | 0.980 | 30 | 450 | 0.98 ± 0.11 | G | 2.78 × 10−2 (G) | - | - | NA | 0.033 ± 0.003 | 6.89 ± 0.19 | 22 | 2 | 0.526 |
63 | 0.980 | 30 | 600 | <DL | G | 2.78 × 10−2 (G) | - | - | NA | 0.021 ± 0.002 | 6.95 ± 0.34 | 17 | 2 | 1.327 |
64 | 0.980 | 30 | 750 | <DL | G | 2.78 × 10−2 (G) | - | - | NA | 0.039 ± 0.014 | 6.96 ± 0.74 | 13 | 2 | 0.744 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serra-Castelló, C.; Desriac, N.; Jofré, A.; Belletti, N.; Coroller, L.; Bover-Cid, S. Key Factors Determining the Behavior of Pathogens in Dry-Cured Ham after High Pressure Processing. Appl. Sci. 2022, 12, 12732. https://doi.org/10.3390/app122412732
Serra-Castelló C, Desriac N, Jofré A, Belletti N, Coroller L, Bover-Cid S. Key Factors Determining the Behavior of Pathogens in Dry-Cured Ham after High Pressure Processing. Applied Sciences. 2022; 12(24):12732. https://doi.org/10.3390/app122412732
Chicago/Turabian StyleSerra-Castelló, Cristina, Noémie Desriac, Anna Jofré, Nicoletta Belletti, Louis Coroller, and Sara Bover-Cid. 2022. "Key Factors Determining the Behavior of Pathogens in Dry-Cured Ham after High Pressure Processing" Applied Sciences 12, no. 24: 12732. https://doi.org/10.3390/app122412732
APA StyleSerra-Castelló, C., Desriac, N., Jofré, A., Belletti, N., Coroller, L., & Bover-Cid, S. (2022). Key Factors Determining the Behavior of Pathogens in Dry-Cured Ham after High Pressure Processing. Applied Sciences, 12(24), 12732. https://doi.org/10.3390/app122412732