An Assessment of Two Types of Industrially Produced Municipal Green Waste Compost by Quality Control Indices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Description of the Regional Nonhazardous Waste Landfill
2.2. Composting Procedure
2.3. Sampling and Sample Preparation
2.4. Analysis of Compost
2.4.1. Physicochemical Analysis
2.4.2. Microbiological Analysis
2.5. Assessment of Compost Quality
2.6. Statistical Analysis
3. Results and Discussion
3.1. Compost Characteristics
3.1.1. Physicochemical Parameters
3.1.2. Macronutrients
3.1.3. Carbon Ratios (C:N and C:P)
3.1.4. Heavy Metals (Zn, Cu, Pb, Cr, Ni, Cd, Hg)
3.1.5. Microbiological Parameters
3.2. Assessment of Compost Quality
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, D.M.-C.; Bodirsky, B.L.; Krueger, T.; Mishra, A.; Popp, A. The world’s growing municipal solid waste: Trends and impacts. Environ. Res. Lett. 2020, 15, 74021. Available online: https://iopscience.iop.org/article/10.1088/1748-9326/ab8659 (accessed on 23 June 2020). [CrossRef]
- EEA. Bio-Waste in Europe—Turning Challenges into Opportunities; EEA Report No 04/2020; European Environment Agency: Bruxelles, Belgium, 2020; pp. 11–28. Available online: https://www.eea.europa.eu/publications/bio-waste-in-europe/download (accessed on 11 August 2020). [CrossRef]
- Haynes, R.J.; Belyaeva, O.N.; Zhou, Y.F. Particle size fractionation as a method for characterizing the nutrient content of municipal green waste used for composting. Waste Manag. 2015, 35, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Inghels, D.; Dullaert, W.; Bloemhof, J. A model for improving sustainable green waste recovery. Resour. Conserv. Recycl. 2016, 110, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Oviedo-Ocaña, E.R.; Dominguez, I.; Komilis, D.; Sánchez, A. Co-composting of green waste mixed with unprocessed and processed food waste: Influence on the composting process and product quality. Waste Biom. Valoriz. 2019, 10, 63–74. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Pandey, A.K.; Khan, J.; Bundela, P.S.; Wong, J.W.C.; Selvam, A. Evaluation of thermophilic fungal consortium for organic municipal solid waste composting. Bioresour. Technol. 2014, 168, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Cesaro, A.; Belgiorno, V.; Guida, M. Compost from organic solid waste: Quality assessment and European regulations for its sustainable use. Resour. Conserv. Recycl. 2015, 94, 72–79. [Google Scholar] [CrossRef]
- Hernández-Gómez, A.M.; Ríos, M.; Portela, A.; Sánchez-Torres, V.; Domínguez, I.; Oviedo-Ocaña, R.; Komilis, D. Co-composting of green waste, food waste and phosphoric rock. Comparison of two-stage composting with traditional composting. Res. Sq. 2020, 1–18. [Google Scholar] [CrossRef]
- Jakubus, M. A comparative study of composts prepared from various organic wastes based on biological and chemical parameters. Agronomy 2020, 10, 869. [Google Scholar] [CrossRef]
- Hernández-Gómez, A.; Calderón, A.; Medina, C.; Sanchez-Torres, V.; Oviedo-Ocaña, E.R. Implementation of strategies to optimize the co-composting of green waste and food waste in developing countries. A case study: Colombia. Environ. Sci. Pollut. Res. 2021, 28, 24321–24327. [Google Scholar] [CrossRef] [PubMed]
- Eggerth, L.L.; Diaz, L.F.; Chang, M.T.F.; Iseppi, L. Chapter 12: Marketing of composts. Waste Manag. Series 2007, 8, 325–355. [Google Scholar] [CrossRef]
- Azim, K.; Soudi, B.; Boukhari, S.; Perissol, C.; Roussos, S.; Alami, T. Composting parameters and compost quality: A literature review. Organ. Agricul. 2018, 8, 141–158. Available online: https://agris.fao.org/agris-search/search.do?recordID=US201800389451 (accessed on 21 June 2016). [CrossRef]
- Franke-Whittle, I.H.; Confalonieri, A.; Insam, H.; Schlegelmilch, M.; Körner, I. Changes in the microbial communities during co-composting of digestates. Waste Manag. 2014, 34, 632–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurado, M.M.; Suárez-Estrella, F.; López, M.J.; Vargas-García, M.C.; Lopez-González, J.A.; Moreno, J. Enhanced turnover of organic matter fractions by microbial stimulation during lignocellulosic waste composting. Bioresour. Technol. 2015, 186, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Morales, A.B.; Bustamante, M.A.; Marhuenda-Egea, F.C.; Moral, R.; Ros, M.; Pascual, J.A. Agri-food sludge management using different co-composting strategies: Study of the added value of the composts obtained. J. Clean. Product. 2016, 121, 186–197. [Google Scholar] [CrossRef] [Green Version]
- Thomas, C.L.; Acquah, G.E.; Whitmore, A.P.; McGrath, S.P.; Haefele, S.M. The effect of different organic fertilizer on yield and soil and crop nutrient concentrations. Agronomy 2019, 9, 776. [Google Scholar] [CrossRef] [Green Version]
- López, M.; Soliva, M.; Martínez-Farré, F.X.; Bonmatí, A.; Huerta-Pujol, O. An assessment of the characteristics of yard trimmings and recirculated yard trimmings used in biowaste composting. Bioresour. Technol. 2010, 101, 1399–1405. [Google Scholar] [CrossRef]
- Reyes-Torres, M.; Oviedo-Ocaña, E.R.; Dominguez, I.; Komilis, D.; Sánchez, A. A systematic review on the composting of green waste: Feedstock quality and optimization strategies. Waste Manag. 2018, 77, 486–499. [Google Scholar] [CrossRef]
- Klipova, I.; Stanevičiūtė, K. Evaluation of green waste composting possibilities. Environ. Res. Engine. Manag. 2013, 65, 6–19. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X.; Tian, Y.; Gong, X. Composted green waste as a substitute for peat in growth media: Effects on growth and nutrition of Calathea insignis. PLoS ONE 2013, 8, e78121. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X. Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste. Waste Manag. 2016, 48, 115–126. [Google Scholar] [CrossRef]
- Tong, J.; Sun, X.; Li, S.; Qu, B.; Wan, L. Reutilization of green waste as compost for soil improvement in the afforested land of the Beijing plain. Sustainability 2018, 10, 2376. [Google Scholar] [CrossRef] [Green Version]
- Wilson, C.R.; Feucht, J.R. Composting yard waste (Revised by E. Hammond). In Garden Series, Fact Sheet 7.212, 10/1997; Revised 8/2000; Colorado State University Extension: Fort Collins, CO, USA, 2020; Available online: https://extension.colostate.edu/docs/pubs/garden/07212.pdf (accessed on 1 September 2022).
- Feng, X.; Sun, X.; Zhou, W.; Zhang, W.; Che, F.; Li, S. The effects of green waste compost on soil N, P, K, and organic matter fractions in forestry soils: Elemental analysis evaluation. RSC Adv. 2021, 11, 31983–31991. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Ou, Y.-L.; Lin, J.-G. Co-composting of green waste and food waste at low C/N ratio. Waste Manag. 2010, 30, 602–609. [Google Scholar] [CrossRef]
- Vandecasteele, B.; Boogaerts, C.; Vandaele, E. Combining woody biomass for combustion with green waste composting: Effect of removal of woody biomass on compost quality. Waste Manag. 2016, 58, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Pergola, M.; Persiani, A.; Pastore, V.; Palese, A.M.; D’Adamo, C.; De Falco, E.; Celano, G. Sustainability assessment of the green compost production chain from agricultural waste: A case study in Southern Italy. Agronomy 2020, 10, 230. [Google Scholar] [CrossRef] [Green Version]
- Belyaeva, O.; Haynes, R. Composting green waste with other wastes to produced manufacturing soil. In Proceedings of the 19th World Congress on Soil Science, Soil Solution for a Changing World, Brisbane, Australia, 1–6 August 2010; pp. 47–50. Available online: https://www.iuss.org/19th%20WCSS/Symposium/pdf/0266.pdf (accessed on 1 September 2022).
- Cáceres, R.; Coromina, N.; Malińska, K.; Marfa, O. Evolution of process control parameters during extended co-composting of green waste and solid fraction of cattle slurry to obtain growing media. Bioresour. Technol. 2015, 179, 398–406. [Google Scholar] [CrossRef]
- Estévez-Schwarz, I.; Seoane-Labandeira, S.; Núñez-Delgado, A.; López-Mosquera, M.E. Production and characterization of compost made from garden and other waste. Pol. J. Environ. Stud. 2012, 21, 855–864. Available online: http://www.pjoes.com/pdf-88816-22675?filename=Production%20and.pdf (accessed on 8 December 2011).
- Zhang, L.; Sun, X. Changes in physical, chemical, and microbiological properties during the two-stage co-composting of green waste with spent mushroom compost and biochar. Bioresour. Technol. 2014, 171, 274–284. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X. Improving green waste composting by addition of sugarcane bagasse and exhausted grape marc. Bioresour. Technol. 2016, 218, 335–343. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X. Effects of bean dregs and crab shell powder additives on the composting of green waste. Bioresour. Technol. 2018, 260, 283–293. [Google Scholar] [CrossRef]
- Levis, J.W.; Barlaz, M.A.; Themelis, N.J.; Ulloa, P. Assessment of the state of food waste treatment in the United States and Canada. Waste Manag. 2010, 30, 1486–1494. [Google Scholar] [CrossRef] [PubMed]
- Benito, M.; Masaguer, A.; Moliner, A.; De Antonio, R. Chemical and physical properties of pruning waste compost and their seasonal variability. Bioresour. Technol. 2006, 97, 2071–2076. [Google Scholar] [CrossRef] [PubMed]
- Schneider, I.; Markov, A.; Yotinov, I.; Dinova, N.; Savov, N.; Topalova, Y. Creation and management of a pilot plant for composting of garden wastes. Ecolog. Engine. Environ. Protect. 2016, 4, 38–46. Available online: https://www.researchgate.net/publication/314116961_Creation_and_management_of_a_pilot_plant_for_composting_of_garden_wastes (accessed on 1 December 2016). (In Bulgarian with abstract in English).
- Weghmann, V. Good Jobs in the Circular Economy? EPSU 2017; Waste Management in Europe: Bruxelles, Belgium, 2017; pp. 15–18. Available online: https://www.epsu.org/sites/default/files/article/files/Waste%20Management%20in%20Europe.%20Good%20Jobs%20in%20the%20Circular%20Economy%20for%20web.pdf (accessed on 1 December 2017).
- López-Portillo, M.P.; Martínez-Jiménez, G.; Ropero-Moriones, E.; Saavedra-Serrano, M.C. Waste treatments in the European Union: A comparative analysis across its member states. Heliyon 2021, 7, e08645. [Google Scholar] [CrossRef] [PubMed]
- Council Directive 1999/31/EC of 26 April 1999 on the Landfill of Waste. Official Journal L 182, 16/07/1999 P. 0001–0019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31999L0031 (accessed on 16 July 1999).
- NSI. Municipal Waste; National Statistical Institute: Sofia, Bulgaria, 2021. Available online: https://www.nsi.bg/en/content/2564/municipal-waste-total (accessed on 8 June 2022).
- NWMP. Ministry of Environment and Water; National Waste Management 2021–2028; National Waste Management: Sofia, Bulgaria, 2020. Available online: https://www.moew.government.bg/static/media/ups/tiny/%D0%A3%D0%9E%D0%9E%D0%9F/%D0%9D%D0%9F%D0%A3%D0%9E-2021-2028/NPUO_2021-2028.pdf (accessed on 3 July 2021).
- Saha, J.K.; Panwar, N.; Singh, M.V. An assessment of municipal solid waste compost quality produced in different cities of India in the perspective of developing quality control indices. Waste Manag. 2010, 30, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Official Gazette (OG). Ordinance No 2 of 23 July 2014 on Waste Classification. OG No 66/2014, Last Amendment OG No 53/08.07.2022. Available online: https://www.lex.bg/laws/ldoc/2136291129 (accessed on 8 August 2014). (In Bulgarian).
- BDS EN 12579:2013. Soil Improvers and Growing Media—Sampling. Sofia, Bulgarian Institute for Standardization. Available online: https://www.en-standard.eu/bs-en-12579-2013-soil-improvers-and-growing-media-sampling/ (accessed on 30 November 2013).
- BDS EN 15933:2012. Sludge, Treated Biowaste and Soil—Determination of pH. Sofia, Bulgarian Institute for Standardization. Available online: https://bds-bg.org/bg/project/show/bds:proj:83513 (accessed on 20 November 2012).
- CEN/TS 15937:2013. Sludge, Treated Biowaste and Soil—Determination of Specific Electrical Conductivity. Sofia, Bulgarian Institute for Standardization. Available online: https://standards.iteh.ai/catalog/standards/cen/8f36107f-456b-4097-874b-bfd939cfee66/cen-ts-15937-2013 (accessed on 1 July 2013).
- BDS EN 15934:2012. Sludge, Treated Biowaste, Soil and Waste—Calculation of Dry Matter Fraction after Determination of Dry Residue or Water Content. Sofia, Bulgarian Institute for Standardization. Available online: https://bds-bg.org/bg/project/show/bds:proj:83514 (accessed on 20 November 2012).
- BDS EN 15936:2012. Sludge, Treated Biowaste, Soil and Waste—Determination of Total Organic Carbon (TOC) by Dry Combustion. Sofia, Bulgarian Institute for Standardization. Available online: https://bds-bg.org/bg/project/show/bds:proj:83516 (accessed on 20 November 2012).
- BDS EN 16169:2012. Sludge, Treated Biowaste and Soil—Determination of Kjeldahl Nitrogen. Sofia, Bulgarian Institute for Standardization. Available online: https://www.en-standard.eu/bs-en-16169-2012-sludge-treated-biowaste-and-soil-determination-of-kjeldahl-nitrogen/ (accessed on 20 September 2012).
- BDS EN 16170:2016. Sludge, Treated Biowaste and Soil—Determination of Elements using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Sofia, Bulgarian Institute for Standardization. Available online: https://bds-bg.org/bg/project/show/bds:proj:99534 (accessed on 15 December 2016).
- BSI (2005) Specification for Composted Materials, Publicity Available Specification, PAS 100:2005, British Standard Institute, London. Available online: http://www.organics-recycling.org.uk/uploads/article3362/PAS%20100.pdf (accessed on 1 March 2005).
- BDS ISO 16649-2:2014. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Beta-Glucuronidase-Positive Escherichia coli—Part 2: Colony-Count Technique at 44 Degrees C Using 5-Bromo-4-Chloro-3-Indolyl Beta-D-Glucuronide. First Publication Date: Sep 19, 2014, Sofia, Bulgarian Institute for Standardization. Available online: https://bds-bg.org/bg/project/show/bds:proj:86693 (accessed on 19 September 2014).
- BDS EN ISO 6579-1:2017/A1:2020. Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp.—Amendment 1 Broader Range of Incubation Temperatures, Amendment to the Status of Annex D, and Correction of the Composition of MSRV and SC (ISO 6579-1:2017/Amd 1:2020). Sofia, Bulgarian Institute for Standardization: Sofia, Bulgarian. Available online: https://bds-bg.org/en/project/show/bds:proj:108026 (accessed on 17 August 2020).
- Mandal, P.; Chaturvedi, M.K.; Bassin, J.K.; Vaidya, A.N.; Gupta, R.K. Qualitative assessment of municipal solid waste compost by indexing method. Int. J. Recycl. Org. Waste Agricult. 2014, 3, 133–139. Available online: https://www.readcube.com/articles/10.1007%2Fs40093-014-0075-x (accessed on 1 October 2014). [CrossRef] [Green Version]
- Official Gazette. Ordinance on Separate Collection of Biowaste and Treatment of Biodegradable Waste; OG No 11/2017; last amendment OG, No 2/08.01.2021; Official Gazette: Sofia, Bulgarian. Available online: http://eea.government.bg/bg/legislation/waste/Naredba_bio_2021.pdf (accessed on 31 January 2017). (In Bulgarian)
- Commission Regulation (EC) No 889/2008 of 5 September 2008 Laying Down Detailed Rules for the Implementation of Council Regulation (EC) No 834/2007 on Organic Production and Labelling of Organic Products with Regard to Organic Production, Labelling and Control. Official Journal of the European Union L 250/1. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008R0889 (accessed on 18 September 2008).
- Ameen, A.; Ahmad, J.; Raza, S. Effect of pH and moisture content on composting of municipal solid waste. Int. J. Scient. Res. Public. 2016, 6, 35–37. Available online: http://www.ijsrp.org/research-paper-0516/ijsrp-p5310.pdf (accessed on 1 May 2016).
- UNTAMED Science. The Science of Compost 2022. Available online: https://untamedscience.com/biology/ecology/ecology-articles/the-science-of-compost/ (accessed on 19 January 2022).
- Taguiling, L.G. Quality improvement of organic compost using green biomass. Europ. Scient. J. 2013, 9, 319–341. Available online: https://eujournal.org/index.php/esj/article/download/2234/2117 (accessed on 1 December 2013).
- Satisha, G.C.; Devarajan, L. Effect of amendments on windrow composting of sugar industry pressmud. Waste Manag. 2007, 27, 1083–1091. [Google Scholar] [CrossRef]
- Beck-Friis, B.; Smårs, S.; Jönsson, H.; Kirchmann, H. SE—Structures and Environment: Gaseous emissions of carbon dioxide, ammonia and nitrous oxide from organic household waste in a compost reactor under different temperature regimes. J. Agric. Eng. Res. 2001, 78, 423–430. [Google Scholar] [CrossRef]
- Yin, Z.; Zhang, L.; Li, R. Effect of additives on physical, chemical, and microbiological properties during green waste composting. Bioresour. Technol. 2021, 340, 125719. [Google Scholar] [CrossRef]
- Morales-Corts, M.R.; Pérez-Sánchez, R.; Gómez-Sánchez, M.Á. Efficiency of garden waste compost teas on tomato growth and its suppressiveness against soilborne pathogens. Sci. Agric. 2018, 75, 400–409. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, C.H.C.; Rocha, F.C.; da Silva, L.L.G.G. Production of organic compost from different plant waste generated in the management of a green urban space. Rev. Ciênc. Agron. 2018, 49, 558–565. [Google Scholar] [CrossRef]
- Milinković, M.; Lalević, B.; Jovičić-Petrović, J.; Golubović-Ćurguz, V.; Kljujev, I.; Raičević, V. Biopotential of compost and compost products derived from horticultural waste—Effect on plant growth and plant pathogens’ suppression. Process Saf. Environ. Prot. 2019, 121, 299–306. [Google Scholar] [CrossRef]
- Cooperband, L.R. Composting: Art and science of organic waste conversion to a valuable soil resource. Laborat. Med. 2000, 31, 283–290. [Google Scholar] [CrossRef]
- Hubbe, M.A.; Nazhad, M.; Sánchez, C. Composting as a way to convert cellulosic biomass and organic waste into high-value soil amendments: A review. BioRes. 2010, 5, 2808–2854. [Google Scholar] [CrossRef]
- Marriott, E.; Zaborski, E. Making and Using Compost for Organic Farming; eOrganic article; Oregon State University: Corvallis, OR, USA, 2009; Available online: https://eorganic.org/node/2880 (accessed on 21 January 2009).
- Risse, M.; Faucette, B. Food Waste Composting: Institutional and Industrial Applications. Bulletin 1189; 2017, Extension.uga.edu, USA. Available online: https://secure.caes.uga.edu/extension/publications/files/pdf/B%201189_4.PDF (accessed on 1 January 2017).
- Pangnakorn, U. Valuable added the agricultural waste for farmers using in organic farming groups in Phitsanulok, Thailand. In Proceedings of the Prosperity and Poverty in a Globalized World Challenges for Agricultural Research, Born, Germany, 11–13 October 2006; Available online: https://www.researchgate.net/profile/Udomporn-Pangnakorn/publication/255572628 (accessed on 26 January 2015).
- Sullivan, D.M.; Miller, R.O. Compost quality attributes, measurements, and variability. In Compost Utilization in Horticultural Cropping Systems; Stoffella, P.J., Kahn, B.A., Eds.; Lewis Publishers: Boca Raton, FL, USA, 2001; pp. 10–11. Available online: https://ir.library.oregonstate.edu/downloads/xw42ng202?locale=en (accessed on 1 September 2022).
- De Morais Viera, V.H.A.; Matheus, D.R. Environmental assessment of biological treatments of biowaste in life cycle perspective: A critical review. Waste Manag. Res. 2019, 37, 1183–1198. [Google Scholar] [CrossRef] [Green Version]
- Ayilara, M.S.; Olanrewaju, O.S.; Babalola, O.O.; Odeyemi, O. Waste management through composting: Challenges and Potentials. Sustainability 2020, 12, 4456. [Google Scholar] [CrossRef]
- Kadir, A.A.; Azhari, N.W.; Jamaludin, S.N. An overview of organic waste in composting. MATEC Web Conf. 2016, 47, 5025. [Google Scholar] [CrossRef] [Green Version]
- Antil, R.S.; Raj, D.; Abdalla, N.; Inubushi, K. Physical, chemical and biological parameters for compost maturity assessment. In Composting for Sustainable Agriculture; Maheshwari, D.K., Ed.; Springer International Publishing: Cham, Switzerland, 2014; Volume 3, pp. 83–101. Available online: https://link.springer.com/book/10.1007/978-3-319-08004-8 (accessed on 1 September 2022).
- Pathak, A.K.; Singh, M.M.; Kumar, V. Composting of municipal solid waste: A sustainable waste management technique in Indian cities—A review. Int. J. Cur. Res. 2011, 3, 339–346. Available online: http://journalcra.com/sites/default/files/issue-pdf/1392_0.pdf (accessed on 31 December 2011).
- Bernal, M.P.; Paredes, C.; Sánchez-Mondero, M.A.; Cegarra, J. Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresour. Technol. 1998, 63, 91–99. [Google Scholar] [CrossRef]
- Gómez-Brandón, M.; Lazcano, C.; Domínguez, J. The evaluation of stability and maturity during the composting of cattle manure. Chemosphere 2008, 70, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Singh, Y.K.; Kalamdhad, A.S.; Ali, M.; Kazmi, A.A. Maturation of primary stabilized compost from rotary drum composter. Resour. Conserv. Recycl. 2009, 53, 386–392. [Google Scholar] [CrossRef]
- Asquer, C.; Cappai, G.; De Gioannis, G.; Muntoni, A.; Piredda, M.; Spiga, D. Biomass ash reutilization as an additive in the composting process of organic fraction of municipal solid waste. Waste Manag. 2017, 69, 127–135. [Google Scholar] [CrossRef]
- Brown, K.H.; Bouwkamp, J.C.; Gouin, F.R. The influence of C:P ratio on the biological degradation of municipal solid waste. Compost Sci. Utiliz. 1998, 6, 53–58. [Google Scholar] [CrossRef]
- Anderson, G. Assessing organic phosphorus in soil. In The Role of Phosphorus in Agriculture; Kwasaneh, F., Saple, E., Kamprah, E.J., Eds.; Book Series: ASA, CSSA, and SSSA Books, USA 1980; American Society of Agronomy: Madison, WI, USA, 1980; pp. 411–431. [Google Scholar] [CrossRef]
- Becher, M.; Symanowicz, B.; Jaremko, D.; Trzcińska, E. Chemical composition of compost from municipal waste in the context of use as fertilizer. Acta Agrophysica 2018, 25, 329–341. [Google Scholar] [CrossRef]
- Anonymous. Review of Scientific Literature on Compost Produced from Food and Garden Organic Waste—Final Report to New South Wales Environment Protection Authority from WCA; Faringdon-Oxfordshire, UK, 2019; pp. 20–22. Available online: https://www.epa.nsw.gov.au/-/media/epa/corporate-site/resources/recycling/mwoo/wca-fogo-report.pdf?la=en&hash=CCA2CB48570D73773C13672E0E605856495993EA (accessed on 1 June 2019).
- Kupper, T.; Bürge, D.; Bachmann, H.J.; Güsewell, S.; Mayer, J. Heavy metals in source-separated compost and digestates. Waste Manag. 2014, 34, 867–874. [Google Scholar] [CrossRef]
- Hultman, J. Microbial Diversity in the Municipal Composting Process and Development of Detection Methods. Ph.D. Thesis, Faculty of Biosciences, University of Helsinki, Helsinki, Finland, 2009; pp. 4–30. Available online: https://core.ac.uk/download/pdf/14917706.pdf (accessed on 23 January 2009).
- Sadeghi, S.; Nikaeen, M.; Mohammadi, F.; Nafez, A.H.; Gholipour, S.; Shamsizadeh, Z.; Hadi, M. Microbial characteristics of municipal solid waste compost: Occupational and public health risks from surface applied compost. Waste Manag. 2022, 144, 98–105. [Google Scholar] [CrossRef]
- Sharma, A.; Ganguly, R.; Gupta, A.K. Spectral characterization and quality assessment of organic compost for agricultural purposes. Int. J. Recycl. Org. Waste Agricult. 2019, 8, 197–213. [Google Scholar] [CrossRef]
No | Parameters | Score Value, Si | Weighing Factor, Wi | ||||
---|---|---|---|---|---|---|---|
5 | 4 | 3 | 2 | 1 | |||
1 | TOC, % | >20 | 15.1–20.0 | 12.1–15.0 | 9.10–12.0 | <9.1 | 5 |
2 | Total N, % | >1.25 | 1.01–1.25 | 0.81–1.00 | 0.51–0.80 | <0.51 | 3 |
3 | Total P, % | >0.60 | 0.41–0.60 | 0.21–0.40 | 0.11–0.20 | <0.11 | 3 |
4 | Total K, % | >1.00 | 0.76–1.00 | 0.51–0.75 | 0.26–0.50 | <0.26 | 1 |
5 | C:N ratio | <10.1 | 10.1–15.0 | 15.1–20.0 | 20.1–25.0 | >25 | 3 |
No | Heavy Metal, mg kg−1 dm | Score Value, Sj | Weighing Factor, Wj | |||||
---|---|---|---|---|---|---|---|---|
5 | 4 | 3 | 2 | 1 | 0 | |||
1 | Zn | <150 | 151–300 | 301–500 | 501–700 | 701–900 | >900 | 1 |
2 | Cu | <51 | 51–100 | 101–200 | 201–400 | 401–600 | >600 | 2 |
3 | Cd | <0.3 | 0.3–0.6 | 0.7–1.0 | 1.1–2.0 | 2.0–4.0 | >4.0 | 5 |
4 | Pb | <51 | 51–100 | 101–150 | 151–250 | 251–400 | >400 | 3 |
5 | Ni | <21 | 21–40 | 41–80 | 81–120 | 121–160 | >160 | 1 |
6 | Cr | <51 | 51–100 | 101–150 | 151–250 | 251–350 | >350 | 3 |
No | Parameters | Compost 1 n = 3 | Compost 2 n = 3 | MAC * Bulgarian Norms | MAC ** EU Norms |
---|---|---|---|---|---|
I | Physicochemical parameters | ||||
1 | Moisture, % Cv, % | 21.8 ± 1.67 7.66 | 17.9 ± 1.45 8.10 | 10% | - |
2 | pH (H2O) Cv, % | 9.27 ± 0.18 1.94 | 9.17 ± 0.18 1.96 | - | - |
3 | EC, mS cm−1 Cv, % | 1.74 ± 0.05 c 2.87 | 2.57 ± 0.08 c 3.11 | ≤3 | - |
4 | TOC, % dm Cv, % | 8.03 ± 1.41 17.6 | 13.3 ± 1.83 13.8 | 15% | - |
II | Macronutrients | ||||
5 | TKN, % dm Cv, % | 1.48 ± 0.28 18.9 | 1.96 ± 0.35 17.8 | - | - |
6 | P, % dm Cv, % | 0.41 ± 0.04 a 9.75 | 0.69 ± 0.05 a 7.24 | - | - |
7 | K, % dm Cv, % | 0.89 ± 0.05 c 5.61 | 1.80 ± 0.08 c 4.44 | - | - |
8 | Mg, % dm Cv, % | 0.53 ± 0.02 b 3.77 | 0.67 ± 0.02 b 2.98 | - | - |
III | Carbon ratios | ||||
9 | C:N ratio Cv, % | 5.42 ± 0.44 8.11 | 6.80 ± 0.71 10.4 | - | - |
10 | C:P ratio Cv, % | 16.7 ± 1.82 10.8 | 19.3 ± 1.58 8.18 | - | - |
IV | Heavy metals | ||||
13 | Zn, mg kg−1 dm Cv, % | 174.3 ± 5.2 2.98 | 188.2 ± 6.4 3.40 | >400 | 200 |
14 | Cu, mg kg−1 dm Cv, % | 41.2 ± 0.5 c 1.21 | 52.1 ± 0.6 c 1.15 | >100 | 70 |
15 | Pb, mg kg−1 dm Cv, % | 29.1 ± 0.2 c 0.68 | 22.4 ± 0.5 c 2.23 | 130 | 45 |
16 | Cr, mg kg−1 dm Cv, % | 23.3 ± 0.2 b 0.85 | 26.2 ± 0.3 b 1.14 | 60 | 70 |
17 | Ni, mg kg−1 dm Cv, % | 9.12 ± 0.05 c 0.54 | 10.2 ± 0.07 c 0.68 | 40 | 25 |
18 | Cd, mg kg−1 dm | <0.9 *** | <0.9 *** | 1.3 | 0.7 |
19 | Hg, mg kg−1 dm | <0.3 *** | <0.3 *** | 0.45 | 0.4 |
V | Microbiological parameters | ||||
20 | Escherichia coli, CFU g−1 | <1.0 | <1.0 | <100 | - |
21 | Salmonella, CFU 25 g−1 | Not detected | Not detected | Not allowed | - |
VI | Indexes | ||||
11 | Fertility index, FI **** | 3.40 | 4.33 | - | - |
12 | Clean index, CI **** | 4.26 | 4.13 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borisova, D.V.; Kostadinova, G.S.; Petkov, G.S.; Dermendzhieva, D.M.; Beev, G.G. An Assessment of Two Types of Industrially Produced Municipal Green Waste Compost by Quality Control Indices. Appl. Sci. 2022, 12, 10668. https://doi.org/10.3390/app122010668
Borisova DV, Kostadinova GS, Petkov GS, Dermendzhieva DM, Beev GG. An Assessment of Two Types of Industrially Produced Municipal Green Waste Compost by Quality Control Indices. Applied Sciences. 2022; 12(20):10668. https://doi.org/10.3390/app122010668
Chicago/Turabian StyleBorisova, Daniela V., Gergana S. Kostadinova, Georgi S. Petkov, Diyana M. Dermendzhieva, and Georgi G. Beev. 2022. "An Assessment of Two Types of Industrially Produced Municipal Green Waste Compost by Quality Control Indices" Applied Sciences 12, no. 20: 10668. https://doi.org/10.3390/app122010668
APA StyleBorisova, D. V., Kostadinova, G. S., Petkov, G. S., Dermendzhieva, D. M., & Beev, G. G. (2022). An Assessment of Two Types of Industrially Produced Municipal Green Waste Compost by Quality Control Indices. Applied Sciences, 12(20), 10668. https://doi.org/10.3390/app122010668