Numerical Study on Aerodynamic Noise Reduction of Pantograph
Abstract
:1. Introduction
2. Geometry Description
3. Computational Methods
3.1. Delay Detached Eddy Simulation
3.2. Ffowcs Williams–Hawkings Equation
3.3. Numerical Validation
4. Results and Discussion
4.1. Flowfield and Acoustic Source of the Original Model
4.2. Far-Field Noise of the Original Model
4.3. Influence of Wavy Rods on the Aerodynamic Noise
4.4. Influence of Contact Strip Modification on the Aerodynamic Noise
5. Conclusions
- The panhead area is a primary acoustic source, of which the noise is stronger than that of the middle and bottom areas at an inflow velocity of 350 km/h. The sound energy of the panhead noise is concentrated in the high-frequency range (f > 500 Hz).
- Applying the wavy rods to change the cross bar surface can effectively reduce the panhead noise, especially the sound energy around the peak frequency. However, changing the arm surface has little effect on weakening the noise radiated out from the middle area.
- Modifying the shape of the contact strip to a hexagon can suppress the vortex shedding and decrease the surface pressure level. By combining the modification of the strip shape and the application of the wavy rods, the panhead noise intensity can be diminished by 5.52 dB.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thompson, D.J.; Iglesias, E.L.; Liu, X.; Zhu, J.; Hu, Z. Recent developments in the prediction and control of aerodynamic noise from high-speed trains. Int. J. Rail Transp. 2015, 3, 119–150. [Google Scholar] [CrossRef]
- Curl, N. The influence of solid boundaries upon aerodynamic sound. Proc. R. Soc. Lond. Ser. A Math Phys. Sci. 1955, 231, 505–514. [Google Scholar]
- Lighthill, M.J. On sound generated aerodynamically. I. General theory. Proc. R. Soc. Lond. Ser. A Math Phys. Sci. 1952, 211, 564–587. [Google Scholar]
- Poisson, F. Railway noise generated by high-speed trains. In Noise and Vibration Mitigation for Rail Transportation Systems. Notes on Numerical Fluid Mechanics and Multidisciplinary Design; Anderson, D., Gautier, P., Iida, M., Nelson, J.T., Thompson, D.J., Tielkes, T., Towers, D.A., de Vos, P., Nielsen, J.C.O., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 457–480. [Google Scholar]
- Talotte, C. Aerodynamic noise: A critical survey. J. Sound Vib. 2000, 231, 549–562. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, T.; Sun, B.; Zhou, S.; Zhao, W. Research on characteristics of aerodynamic noise source for high-speed train. J. China Railw. Soc. 2015, 37, 10–17. (In Chinese) [Google Scholar]
- Ikeda, M.; Takaishi, T. Perforated Pantograph Horn Aeolian Tone Suppression Mechanism. Q. Rep. RTRI 2004, 45, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Sueki, T.; Ikeda, M.; Takaishi, T. Aerodynamic noise reduction using porous materials and their application to high-speed pantographs. Q. Rep. RTRI 2009, 50, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Kurita, T.; Hara, M.; Yamada, H.; Wakabayashi, Y.; Mizushima, F.; Satoh, H.; Shikama, T. Reduction of pantograph noise of high-speed trains. J. Mech. Syst. Transp. Logist. 2010, 3, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Tan, X.M.; Yang, Z.G.; Xue, Y.Q.; Shen, Y.N.; Wang, H.W. Aeroacoustic optimization design of the middle and upper part of pantograph. Appl. Sci. 2022, 12, 8704. [Google Scholar] [CrossRef]
- Talotte, C.; Gautier, P.-E.; Thompson, D.J.; Hanson, C. Identification, modelling and reduction potential of railway noise sources: A critical survey. J. Sound Vib. 2003, 267, 447–468. [Google Scholar] [CrossRef]
- Al-Sadawi, L.; Chong, T.P. Circular cylinder wake and noise control using DBD plasma actuator. In Proceedings of the 25th AIAA/CEAS Aeroacoustics Conference, Delft, The Netherlands, 20–23 May 2019. [Google Scholar]
- Shi, L.; Zhang, C.; Wang, J.; Ren, L. Numerical simulation of the effect of bionic serrated structures on the aerodynamic noise of a circular cylinder. J. Bionic Eng. 2012, 9, 91–98. [Google Scholar] [CrossRef]
- Li, L.; Liu, P.Q.; Xing, Y.; Guo, H. Experimental investigation on the noise reduction method of helical cables for a circular cylinder and tandem cylinders. Appl. Acoust. 2019, 152, 79–87. [Google Scholar] [CrossRef]
- Zhang, Z.; Tu, J.; Zhang, K.; Yang, H.; Han, Z.; Zhou, D.; Xu, J.; Zhang, M. Vortex characteristics and flow-induced forces of the wavy cylinder at a subcritical Reynolds number. Ocean Eng. 2021, 222, 108593. [Google Scholar] [CrossRef]
- Bai, H.; Lu, Z.; Wei, R.; Yang, Y.; Liu, Y. Noise reduction of sinusoidal wavy cylinder in subcritical flow regime. Phys. Fluids 2021, 33, 105120. [Google Scholar] [CrossRef]
- Chen, B.; Yang, X.; Chen, G.; Tang, X.; Ding, J.; Weng, P. Numerical study on the flow and noise control mechanism of wavy cylinder. Phys. Fluids 2022, 34, 036108. [Google Scholar] [CrossRef]
- Spalart, P.R.; Deck, D.; Shur, M.L.; Squires, K.D. A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 2006, 20, 181–195. [Google Scholar] [CrossRef]
- Tan, X.M.; Xie, P.P.; Yang, Z.G.; Gao, J.Y. Adaptability of Turbulence Models for Pantograph Aerodynamic noise simulation. Shock Vib. 2019, 2019, 6405809. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Gao, Z.; Jiang, C.; Lee, C. An in-depth numerical investigation of a supersonic cavity-ramp flow with DDES method. Aerosp. Sci. Technol. 2019, 89, 253–263. [Google Scholar] [CrossRef]
- ANSYS Fluent Theory Guide, 2020 R1; ANSYS, Inc.: San Jose, CA, USA, 2020.
- Ffowcs Williams, J.E.; Hawkings, D.L. Sound generation by turbulence and surfaces in arbitrary motion. Philos. Trans. R. Soc. Lon. Ser. A Math. Phys. Sci. 1969, 264, 321–342. [Google Scholar]
- Li, L.; Liu, P.Q.; Xing, Y.; Guo, H.; Tian, Y. Far-field aeroacoustic experimental study of flow around a circular cylinder at subcritical Reynolds number. J. Beijing Univ. Aeronaut. Astronaut. 2016, 42, 977–983. (In Chinese) [Google Scholar]
- Tan, X.M.; Yang, Z.G.; Tan, X.M.; Wu, X.I.; Zhang, J. Vortex structures and aeroacoustic performance of the flow field of the pantograph. J. Sound Vib. 2018, 432, 17–32. [Google Scholar]
(km/h) | (kg/m3) | (K) |
---|---|---|
350 | 1.225 | 288.15 |
Velocity Inlet | Symmetry | Pressure Outlet | Wall |
---|---|---|---|
Face ABCD | Face AEHD, BFGC, CGHD | Face EFGH | Face ABFE |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, F.; Shi, F.; Tian, X.; Wang, T. Numerical Study on Aerodynamic Noise Reduction of Pantograph. Appl. Sci. 2022, 12, 10720. https://doi.org/10.3390/app122110720
Shi F, Shi F, Tian X, Wang T. Numerical Study on Aerodynamic Noise Reduction of Pantograph. Applied Sciences. 2022; 12(21):10720. https://doi.org/10.3390/app122110720
Chicago/Turabian StyleShi, Fangcheng, Fushan Shi, Xudong Tian, and Tiantian Wang. 2022. "Numerical Study on Aerodynamic Noise Reduction of Pantograph" Applied Sciences 12, no. 21: 10720. https://doi.org/10.3390/app122110720
APA StyleShi, F., Shi, F., Tian, X., & Wang, T. (2022). Numerical Study on Aerodynamic Noise Reduction of Pantograph. Applied Sciences, 12(21), 10720. https://doi.org/10.3390/app122110720