Physical Interpretation of Nanofluid (Copper Oxide and Silver) with Slip and Mixed Convection Effects: Applications of Fractional Derivatives
Abstract
:1. Introduction
2. Problem Formulation
3. Basics of Fractional Simulations
4. Solution by Atangana–Baleanu (AB) Operator
4.1. AB Operator for Temperature Profile
4.2. Velocity Field via AB-Fractional Derivative
5. Modeling via CF Time-Fractional Derivative
5.1. Energy Field via CF-Fractional Derivative
5.2. Velocity Field via CF-Fractional Derivative
6. Special Cases
7. Validation of Results
8. Physical Analysis of Results
9. Concluding Remarks
- ❖
- The thermal characteristics of heat transfer could be magnificently improved in the presence of copper oxide and silver nanoparticles.
- ❖
- A relatively improved profile of velocity was observed for the copper–water-based suspension compared to the kerosene-oil suspension.
- ❖
- A lower velocity rate was observed for the volume fraction and increasing values of fractional parameters.
- ❖
- The increasing thermal outcomes were predicted for the suspension of kerosene oil and silver nanoparticles compared to copper oxide and water-based material.
- ❖
- Decaying thermal outcomes were observed when the fractional parameters and Prandtl number were varied.
- ❖
- ❖
- These results can be further extended by incorporating various thermal features such as entropy generation, exponential heat sources, activation energy, joule heating, and bioconvection and by using different non-Newtonian models.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Velocity | |
Time | |
Constant Velocity | |
Density | |
Temperature | |
Thermal conductivity | |
Prandtl number | |
Grashof number | |
Dynamic viscosity | |
Density of nanoparticles | |
Magnetic parameter | |
Nanofluid | |
slip parameter | |
AB-fractional derivative operator | |
CF-fractional derivative operator | |
Nusselt number | |
Skin Friction | |
CF | Caputo–Fabrizio fractional derivative |
Laplace variable by AB | |
Laplace variable by CF | |
Acceleration due to gravity | |
AB | Atangana–Baleanu fractional derivative |
Density of base fluid |
References
- Choi SUS 1995 Enhancing thermal conductivity of fluids with nanoparticles Proc Int Mech Eng Congress San Francisco USA ASME FED 231/MD66 99–105.
- Mahdavi, M.; Sharifpur, M.; Ahmadi, M.H.; Meyer, J.P. Nanofluid flow and shear layers between two parallel plates: A simulation approach. Eng. Appl. Comput. Fluid Mech. 2020, 14, 1536–1545. [Google Scholar] [CrossRef]
- Dawar, A.; Wakif, A.; Thumma, T.; Shah, N.A. Towards a new MHD non-homogeneous convective nanofluid flow model for simulating a rotating inclined thin layer of sodium alginate-based Iron oxide exposed to incident solar energy. Int. Commun. Heat Mass Transf. 2022, 130, 105800. [Google Scholar] [CrossRef]
- Uddin, M.J.; Rasel, S.K.; Adewole, J.K.; al Kalbani, K.S. Finite element simulation on the convective double diffusive water-based copper oxide nanofluid flow in a square cavity having vertical wavy surfaces in presence of hydro-magnetic field. Results Eng. 2022, 13, 100364. [Google Scholar] [CrossRef]
- Ghasemi, S.E.; Mohsenian, S.; Gouran, S.; Zolfagharian, A. A novel spectral relaxation approach for nanofluid flow past a stretching surface in presence of magnetic field and nonlinear radiation. Results Phys. 2022, 32, 105141. [Google Scholar] [CrossRef]
- Li, Y.M.; Al-Khaled, K.; Gouadria, S.; El-Zahar, E.R.; Usman Khan, S.U.; Khan, M.I.; Malik, M.Y. Numerical simulations for three-dimensional rotating porous disk flow of viscoelastic nanomaterial with activation energy, heat generation and Nield boundary conditions. Waves Random Complex Media 2022. [Google Scholar] [CrossRef]
- Usman; Bhatti, M.M.; Ghaffari, A.; Doranehgard, M.H. The role of radiation and bioconvection as an external agent to control the temperature and motion of fluid over the radially spinning circular surface: A theoretical analysis via Chebyshev spectral approach. Math. Meth. Appl. Sci. 2022, 1–18. [Google Scholar] [CrossRef]
- Mohsenian, S.; Gouran, S.; Ghasemi, S.E. Evaluation of weighted residual methods for thermal radiation on nanofluid flow between two tubes in presence of magnetic field. Case Stud. Therm. Eng. 2022, 32, 101867. [Google Scholar] [CrossRef]
- Klazly, M.; Bognar, G. Heat transfer enhancement for nanofluid flows over a microscale backward-facing step. Alex. Eng. J. 2022, 61, 8161–8176. [Google Scholar] [CrossRef]
- Acharya, N.; Mabood, F.; Shahzad, S.A.; Badruddin, I.A. Hydrothermal variations of radiative nanofluid flow by the influence of nanoparticles diameter and nanolayer. Int. Commun. Heat Mass Transf. 2022, 130, 105781. [Google Scholar] [CrossRef]
- Muthtamilselvan, M.; Suganya, S.; Al-Mdallal, Q.M. Stagnation-Point Flow of the Williamson Nanofluid Containing Gyrotactic Micro-organisms. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2021, 91, 633–648. [Google Scholar] [CrossRef]
- Al-Mdallal, Q.M.; Renuka, A.; Muthtamilselvan, M.; Abdalla, B. Ree-Eyring fluid flow of Cu-water nanofluid between infinite spinning disks with an effect of thermal radiation. Ain Shams Eng. J. 2021, 12, 2947–2956. [Google Scholar] [CrossRef]
- Milici, C.; Draganescu, G.; Machado, J.T. Introduction to Fractional Differential Equations; Springer Nature Switzerland AG: Cham, Switzerland, 2019. [Google Scholar]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Atangana, A.; Baleanu, D. New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Waqas, H.; Oreijah, M.; Guedri, K.; Khan, S.U.; Yang, S.; Yasmin, S.; Khan, M.I.; Bafakeeh, O.T.; Tag-ElDin, E.S.M.; Galal, A.M. Gyrotactic motile microorganisms impact on pseudoplastic nanofluid flow over a moving Riga surface with exponential heat flux. Crystals 2022, 12, 1308. [Google Scholar] [CrossRef]
- Shahid, M.; Javed, H.M.A.; Ahmad, M.I.; Qureshi, A.A.; Khan, M.I.; Alnuwaiser, M.A.; Ahmed, A.; Khan, M.A.; Tag-Eldin, E.; Shahid, A.; et al. A brief assessment on recent developments in efficient electrocatalytic Nitrogen reduction with 2D non-metallic nanomaterials. Nanomaterials 2022, 12, 3413. [Google Scholar] [CrossRef]
- Manzoor, N.; Qasim, I.; Khan, M.I.; Ahmed, M.W.; Guedri, K.; Bafakeeh, O.T.; Tag-Eldin, E.S.M.; Galal, A.M. Antibacterial applications of low pressure plasma on degradation of multidrug resistant V. cholera. Appl. Sci. 2022, 12, 9737. [Google Scholar] [CrossRef]
- Mamatha, S.U.; Devi, R.L.V.R.; Ahammad, N.A.; Shah, N.A.; Rao, B.M.; Raju, C.S.K.; Khan, M.I.; Guedri, K. Multi-linear regression of triple diffusive convectively heated boundary layer flow with suction and injection: Lie group transformations. Int. J. Mod. Phys. B 2022, in press. [CrossRef]
- Kiranakumar, H.V.; Thejas, R.; Naveen, C.S.; Khan, M.I.; Prasanna, G.D.; Reddy, S.; Oreijah, M.; Guedri, K.; Bafakeeh, O.T.; Jameel, M. A review on electrical and gas-sensing properties of reduced graphene oxide-metal oxide nanocomposites. Biomass Convers. Biorefinery 2022, in press. [CrossRef]
- Abbasi, A.; Farooq, W.; Tag-ElDin, E.S.M.; Khan, S.U.; Khan, M.I.; Guedri, K.; Elattar, S.; Waqas, M.; Galal, A.M. Heat transport exploration for hybrid nanoparticle (Cu, Fe3O4)-based blood flow via tapered complex wavy curved channel with slip features. Micromachines 2022, 13, 1415. [Google Scholar] [CrossRef]
- Wahid, N.S.; Arifina, N.M.; Khashi’ie, N.S.; Pop, I.; Bachok, N.; Hafidzuddin, M.E.H. MHD mixed convection flow of a hybrid nanofluid past a permeable vertical flat plate with thermal radiation effect. Alex. Eng. J. 2022, 61, 3323–3333. [Google Scholar] [CrossRef]
- Ashorynejad, H.R.; Shahriari, A. MHD natural convection of hybrid nanofluid in an open wavy cavity. Results Phys. 2018, 9, 440–455. [Google Scholar] [CrossRef]
- Puneetha, V.; Khan, M.I.; Jameel, M.; Geudri, K.; Galal, A.M. The convective heat transfer analysis of the casson nanofluid jet flow under the influence of the movement of gyrotactic microorganisms. J. Indian Chem. Soc. 2022, 9, 100612. [Google Scholar] [CrossRef]
- Oztop, H.F.; Abu-Nada, E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 2008, 29, 1326–1336. [Google Scholar] [CrossRef]
- Raza, A.; Ghaffari, A.; Khan, S.U.; Haq, A.U.; Khan, M.I.; Khan, M.R. Non-singular fractional computations for the radiative heat and mass transfer phenomenon subject to mixed convection and slip boundary effects. Chaos Solitons Fractals 2022, 155, 111708. [Google Scholar] [CrossRef]
- Raza, A.; Khan, S.U.; Al-Khaled, K.; Khan, M.I.; Haq, A.U.; Alotaibi, F.; Mousa, A.A.A.; Qayyum, S. A fractional model for the kerosene oil and water-based Casson nanofluid with inclined magnetic force. Chem. Phys. Lett. 2022, 787, 139277. [Google Scholar] [CrossRef]
- Raza, A.; Khan, S.U.; Khan, M.I.; Farid, S.; Muhammad, T.; Khan, M.I.; Galal, A.M. Fractional order simulations for the thermal determination of graphene oxide (GO) and molybdenum disulphide (MoS2) nanoparticles with slip effects. Case Stud. Therm. Eng. 2021, 28, 101453. [Google Scholar] [CrossRef]
- Guo, B.; Raza, A.; Al-Khaled, K.; Khan, S.U.; Farid, S.; Wang, Y.; IjazKhan, M.; Malik, M.Y.; Saleem, S. Fractional-order simulations for heat and mass transfer analysis confined by elliptic inclined plate with slip effects: A comparative fractional analysis. Case Stud. Therm. Eng. 2021, 28, 101359. [Google Scholar] [CrossRef]
- Basit, A.; Asjad, M.I.; Akgül, A. Convective flow of a fractional second grade fluid containing different nanoparticles with Prabhakar fractional derivative subject to non-uniform velocity at the boundary. Math. Methods Appl. Sci. 2021. [Google Scholar] [CrossRef]
- Stehfest, H. Algorithm 368: Numerical inversion of Laplace transforms [D5]. Commun. ACM 1970, 13, 47–49. [Google Scholar] [CrossRef]
- Tzou, D.Y. Macro-to Microscale Heat Transfer: The Lagging Behavior; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
Materials | ||||
---|---|---|---|---|
997.1 | 4179 | 0.613 | 21 | |
kerosene oil | 884 | 1910 | 0.114 | 70 |
6320 | 531.8 | 76.5 | 1.80 | |
10,500 | 235 | 429 | 1.89 |
Temperature Change by Stehfest [31] | Temperature Change by Tzou [32] | Velocity Change by Stehfest [31] | Velocity Change by Tzou [32] | |
---|---|---|---|---|
0.1 | 0.9314 | 0.9313 | 0.5159 | 0.5130 |
0.3 | 0.6380 | 0.6379 | 0.5733 | 0.5703 |
0.5 | 0.4368 | 0.4367 | 0.5759 | 0.5730 |
0.7 | 0.2989 | 0.2988 | 0.5471 | 0.5443 |
0.9 | 0.2044 | 0.2043 | 0.5019 | 0.4993 |
1.1 | 0.1397 | 0.1397 | 0.4496 | 0.4473 |
1.3 | 0.0954 | 0.0954 | 0.3962 | 0.3940 |
1.5 | 0.0651 | 0.0651 | 0.3448 | 0.3429 |
1.7 | 0.0445 | 0.0444 | 0.2943 | 0.2957 |
1.9 | 0.0303 | 0.0303 | 0.2546 | 0.2532 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bafakeeh, O.T.; Raza, A.; Khan, S.U.; Khan, M.I.; Nasr, A.; Khedher, N.B.; Tag-Eldin, E.S.M. Physical Interpretation of Nanofluid (Copper Oxide and Silver) with Slip and Mixed Convection Effects: Applications of Fractional Derivatives. Appl. Sci. 2022, 12, 10860. https://doi.org/10.3390/app122110860
Bafakeeh OT, Raza A, Khan SU, Khan MI, Nasr A, Khedher NB, Tag-Eldin ESM. Physical Interpretation of Nanofluid (Copper Oxide and Silver) with Slip and Mixed Convection Effects: Applications of Fractional Derivatives. Applied Sciences. 2022; 12(21):10860. https://doi.org/10.3390/app122110860
Chicago/Turabian StyleBafakeeh, Omar T., Ali Raza, Sami Ullah Khan, Muhammad Ijaz Khan, Abdelaziz Nasr, Nidhal Ben Khedher, and El Sayed Mohamed Tag-Eldin. 2022. "Physical Interpretation of Nanofluid (Copper Oxide and Silver) with Slip and Mixed Convection Effects: Applications of Fractional Derivatives" Applied Sciences 12, no. 21: 10860. https://doi.org/10.3390/app122110860
APA StyleBafakeeh, O. T., Raza, A., Khan, S. U., Khan, M. I., Nasr, A., Khedher, N. B., & Tag-Eldin, E. S. M. (2022). Physical Interpretation of Nanofluid (Copper Oxide and Silver) with Slip and Mixed Convection Effects: Applications of Fractional Derivatives. Applied Sciences, 12(21), 10860. https://doi.org/10.3390/app122110860