A Novel SINS/SRS/CNS Multi-Information Fusion Global Autonomous Navigation Method
Abstract
:1. Introduction
2. Design of the Multi-Information Fusion Global Autonomous Navigation Scheme
3. The Multi-Information Fusion Autonomous Navigation System Based on SINS/SRS/CNS
3.1. The Principle of Spectral Redshift Navigation
3.2. The System Equations of the SINS/SRS/CNS Multi-Information Fusion Autonomous Navigation System in the Middle–Low Latitudes
3.2.1. State Equations
3.2.2. Measurement Equations
- (1)
- SINS/SRS velocity measurement
- (2)
- SINS/CNS position measurement
3.3. The System Equations of the SINS/SRS/CNS Multi-Information Fusion Autonomous Navigation System in the High Latitudes
3.3.1. State Equations
3.3.2. Measurement Equations
- (1)
- SINS/SRS velocity measurement
- (2)
- SINS/CNS position measurement
4. Parameter Conversion of the SINS/SRS/CNS Multi-Information Fusion Autonomous Navigation System
4.1. Navigation Parameter Conversion
4.2. Filter Parameter Conversion
5. Experiment and Discussion
5.1. Simulation and Analysis
5.2. Experiment and Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sheridan, I. Drones and Global Navigation Satellite Systems: Current Evidence from Polar Scientists. R. Soc. Open Sci. 2020, 7, 191494. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Xu, X.; Ge, H.R. Single-Axis Rotation Modulation Transverse SINS Based on Virtual Sphere Model in Polar Region. IEEE Sens. J. 2022, 22, 13442–13450. [Google Scholar] [CrossRef]
- Zhao, W.Y.; Zhang, G.T.; Liu, W. Working Performance Analysis on Polar Navigation of Semi-analytical Inertial Navigation System. In Proceedings of the 2021 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS), Shenyang, China, 10–11 December 2021. [Google Scholar]
- Zhao, B.; Zeng, Q.H.; Liu, J.Y. A New Polar Alignment Algorithm Based on the Huber Estimation Filter with the Aid of BeiDou Navigation Satellite System. Int. J. Distrib. Sens. Netw. 2021, 17, 15501477211004115. [Google Scholar] [CrossRef]
- Zhao, W.Y.; Zhang, G.T.; Liu, W. Research on High-latitude Transfer Alignment Technology. In Proceedings of the 2021 International Conference on Intelligent Computing, Automation and Systems (ICICAS), Chongqing, China, 29–31 December 2021. [Google Scholar]
- Zhang, F.B.; Gao, X.H.; Song, W.B. A Vision Aided Initial Alignment Method of Strapdown Inertial Navigation Systems in Polar Regions. Sensors 2022, 22, 4691. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.T.; Ben, Y.Y.; Zhang, H.X. A Review of Polar Marine Navigation Schemes. In Proceedings of the 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), Portland, OR, USA, 20–23 April 2020. [Google Scholar]
- Song, L.J.; Zhao, W.L.; Cheng, Y.X. Based on Grid Reference Frame for SINS/CNS Integrated Navigation System in the Polar Regions. Complexity 2019, 2019, 2164053. [Google Scholar]
- Zhao, L.; Kang, Y.Y.; Cheng, J.H. A Fault-Tolerant Polar Grid SINS/DVL/USBL Integrated Navigation Algorithm Based on the Centralized Filter and Relative Position Measurement. Sensors 2019, 19, 3899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, L.; Xu, X.; Zhao, H.M. Transverse SINS/DVL Integrated Polar Navigation Algorithm Based on Virtual Sphere Model. Math. Probl. Eng. 2020, 2020, 8892750. [Google Scholar] [CrossRef]
- Zhao, C.L.; Wu, W.Q.; Lian, J.X. Research on Rotating Modulation Inertial Navigation System Error Characteristics Simulation Method in Polar Area. In Proceedings of the Guidance, Navigation & Control Conference (CGNCC), Yantai, China, 8–10 August 2014. [Google Scholar]
- Sun, J.L.; Wu, Z.L.; Yin, Z.D. Adaptive Filtering and Temporal Alignment Based Fusion Algorithm for Navigation Systems in the Arctic Region. IEEE Syst. J. 2018, 13, 2022–2033. [Google Scholar] [CrossRef]
- Song, L.J.; Yang, G.Q.; Zhao, W.L. The Inertial Integrated Navigation Algorithms in the Polar Region. Math. Probl. Eng. 2020, 2020, 5895847. [Google Scholar] [CrossRef]
- Yang, S.J.; Feng, W.W.; Wang, S. A SINS/CNS Integrated Navigation Scheme with Improved mathematical horizon reference. Measurement 2022, 195, 111028. [Google Scholar] [CrossRef]
- Tian, M. Review of Polar Integrated Navigation Algorithm. J. Phys. Conf. Ser. 2019, 1213, 032017. [Google Scholar]
- Wei, W.H.; Gao, Z.H.; Gao, S.S. A SINS/SRS/GNS Autonomous Integrated Navigation System Based on Spectral Redshift Velocity Measurements. Sensors 2018, 18, 1145. [Google Scholar] [CrossRef]
- Collins, J.; Conger, R. MANS-Autonomous Navigation and Orbit Control for Communications Satellites. In Proceedings of the 15th International Communicatons Satellite Systems Conference and Exhibit, San Diego, CA, USA, 28 February–3 March 1994. [Google Scholar]
- Tai, F.; Noerdlinger, P.D. A Low Cost Autonomous Navigation System. In Proceedings of the Guidance and Control Conference, Keystone, CO, USA, 4–8 February 1989. [Google Scholar]
- Gao, G.L.; Gao, S.S.; Hong, G.Y. A Robust INS/SRS/CNS Integrated Navigation System with the Chi-Square Test-Based Robust Kalman Filter. Sensors 2020, 20, 5909. [Google Scholar] [CrossRef]
- Gao, G.L.; Gao, S.S.; Hu, G.L. Spectral Redshift Observation-based SINS/SRS/CNS Integration with an Adaptive Fault-tolerant Cubature Kalman Filter. Meas. Sci. Technol. 2021, 32, 095103. [Google Scholar] [CrossRef]
- Chen, W.N.; Zeng, Q.H.; Liu, J.Y. Seamless Autonomous Navigation Based on the Motion Constraint of the Mobile Robot. Ind. Robot. 2017, 44, 178–188. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Gyro constant bias (deg/h) | 0.01 |
Accelerometer constant bias (ug) | 100 |
Gyro angular random walk (deg/sqrt(h)) | 0.001 |
Accelerometer velocity random walk (ug/sqrt(Hz)) | 10 |
CNS position error (m) | 20 |
BA altitude error (m) | 10 |
SRS velocity error (m/s) | 0.5 |
Parameters | Value |
---|---|
Gyro constant bias (deg/h) | 0.015 |
Accelerometer constant bias (ug) | 85 |
Gyro angular random walk (deg/sqrt(h)) | 0.0007 |
Accelerometer velocity random walk (ug/sqrt(Hz)) | 10 |
Horizontal positioning error (m) | 20 |
Altitude error (m) | 10 |
Velocity error (m/s) | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, B.; Zeng, Q.; Liu, J.; Gao, C.; Zhu, X.; Qiao, W. A Novel SINS/SRS/CNS Multi-Information Fusion Global Autonomous Navigation Method. Appl. Sci. 2022, 12, 10862. https://doi.org/10.3390/app122110862
Zhao B, Zeng Q, Liu J, Gao C, Zhu X, Qiao W. A Novel SINS/SRS/CNS Multi-Information Fusion Global Autonomous Navigation Method. Applied Sciences. 2022; 12(21):10862. https://doi.org/10.3390/app122110862
Chicago/Turabian StyleZhao, Bin, Qinghua Zeng, Jianye Liu, Chunlei Gao, Xiaoling Zhu, and Wei Qiao. 2022. "A Novel SINS/SRS/CNS Multi-Information Fusion Global Autonomous Navigation Method" Applied Sciences 12, no. 21: 10862. https://doi.org/10.3390/app122110862
APA StyleZhao, B., Zeng, Q., Liu, J., Gao, C., Zhu, X., & Qiao, W. (2022). A Novel SINS/SRS/CNS Multi-Information Fusion Global Autonomous Navigation Method. Applied Sciences, 12(21), 10862. https://doi.org/10.3390/app122110862