Development and Finite Element Analysis of a Novel Bent Bone Plate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Aspect
2.2. Materials
2.3. Geometrical Model of a Bone Plate
2.3.1. Traditional Flat Plate
2.3.2. Developed Plate Design (Flat)
2.3.3. Developed Design (Bent)
2.4. FEA Boundary Condition
2.4.1. Fixed Support
2.4.2. Load
3. FEA Results and Discussion
3.1. Traditional Flat Plate
3.2. Flat Newly Developed Plate Design
3.2.1. Bent Newly Developed Plate Design
Bent, 10°
Bent, 20°
Bent, 30°
Bent, 40°
Bent, 50°
3.3. Result Summary
3.3.1. Total Displacement (m)
No. | Name | Minimum | Maximum | Average |
---|---|---|---|---|
1 | Traditional | 0 | 48.8 × 10−9 | 3.63 × 10−9 |
2 | Design—0° | 0 | 29.6 × 10−9 | 4.53 × 10−9 |
3 | Design—10° | 0 | 29.6 × 10−9 | 4.61 × 10−9 |
4 | Design—20° | 0 | 30.5 × 10−9 | 4.69 × 10−9 |
5 | Design—30° | 0 | 31.4 × 10−9 | 4.77 × 10−9 |
6 | Design—40° | 0 | 32.1 × 10−9 | 4.86 × 10−9 |
7 | Design—50° | 0 | 32.7 × 10−9 | 4.95 × 10−9 |
3.3.2. Von Mises Stress (N/m2)
No. | Name | Minimum | Maximum | Average |
---|---|---|---|---|
1 | Traditional | 6.02 × 10−1 | 3.57 × 106 | 0.227 × 106 |
2 | Design—0° | 7.04 × 10 | 2.07 × 106 | 0.269 × 106 |
3 | Design—10° | 6.56 × 10 | 2.88 × 106 | 0.271 × 106 |
4 | Design—20° | 3.95 × 10 | 3.84 × 106 | 0.273 × 106 |
5 | Design—30° | 6.11 × 10 | 3.09 × 106 | 0.276 × 106 |
6 | Design—40° | 4.94 × 10 | 2.81 × 106 | 0.278 × 106 |
7 | Design—50° | 2.15 × 10 | 4.10 × 106 | 0.280 × 106 |
3.3.3. First Principal Strain (1)
No. | Name | Minimum | Maximum | Average |
---|---|---|---|---|
1 | Traditional | 1.99 × 10−12 | 29.3 × 10−6 | 1.48 × 10−6 |
2 | Design—0° | 3.60 × 10−10 | 16.4 × 10−6 | 1.75 × 10−6 |
3 | Design—10° | 3.40 × 10−10 | 23.6 × 10−6 | 1.77 × 10−6 |
4 | Design—20° | 1.35 × 10−10 | 33.3 × 10−6 | 1.79 × 10−6 |
5 | Design—30° | 3.91 × 10−10 | 26.3 × 10−6 | 1.81 × 10−6 |
6 | Design—40° | 2.83 × 10−10 | 24.9 × 10−6 | 1.83 × 10−6 |
7 | Design—50° | 1.41 × 10−10 | 35.2 × 10−6 | 1.85 × 10−6 |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.-C.; Chen, L.-Y. A Review on Biomedical Titanium Alloys: Recent Progress and Prospect. Adv. Eng. Mater. 2019, 21, 1801215. [Google Scholar] [CrossRef] [Green Version]
- Gepreel, M.A.H.; Niinomi, M. Biocompatibility of Ti-alloys for long-term implantation. J. Mech. Behav. Biomed. Mater. 2013, 20, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Al-Tamimi, A.A.; Fernandes, P.R.A.; Peach, C.; Cooper, G.; Diver, C.; Bartolo, P.J. Metallic bone fixation implants: A novel design approach for reducing the stress shielding phenomenon. Virtual Phys. Prototyp. 2017, 12, 141–151. [Google Scholar] [CrossRef]
- Benli, S.; Aksoy, S.; Havıtcıoğlu, H.; Kucuk, M. Evaluation of bone plate with low-stiffness material in terms of stress distribution. J. Biomech. 2008, 41, 3229–3235. [Google Scholar] [CrossRef] [PubMed]
- Koch, D. Applications of Plates and Screws. In Manual for Small Animal Fracture Treatment; AO Publishing: Bolton, UK, 2005; pp. 26–51. [Google Scholar]
- D’Angeli, V.; Belvedere, C.; Ortolani, M.; Giannini, S.; Leardini, A. Load along the femur shaft during activities of daily living. J. Biomech. 2013, 46, 2002–2010. [Google Scholar] [CrossRef] [PubMed]
- Constant, C.; Zderic, I.; Arens, D.; Pugliese, B.; Gehweiler, D.; Gueorguiev–Rüegg, B.; Zeiter, S. Influence of screw head diameter on ex vivo fixation of equine lateral condylar fractures with 5.5 mm cortical screws. Vet. Surg. 2022, 51, 576–591. [Google Scholar] [CrossRef] [PubMed]
- Jong, I.C.; Springer, W. Teaching von Mises Stress: From Principal Axes to Non-Principal Axes. Am. Soc. Eng. Educ. 2009, 14.1159.1–14.1159.9. [Google Scholar] [CrossRef]
- Satriano, A.; Heydari, B.; Narous, M.; Exner, D.V.; Mikami, Y.; Attwood, M.M.; Tyberg, J.V.; Lydell, C.P.; Howarth, A.G.; Fine, N.M.; et al. Clinical feasibility and validation of 3D principal strain analysis from cine MRI: Comparison to 2D strain by MRI and 3D speckle tracking echocardiography. Int. J. Cardiovasc. Imaging 2017, 33, 1979–1992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, B. 5—Stess Analysis in Two-Dimensional Problems. In Stress, Strain, and Structural Dynamics; Academic Press: Cambridge, MA, USA, 2005; pp. 135–156. [Google Scholar]
- Friis, E.; DeCoster, T.; Thomas, J. Mechanical testing of fracture fixation devices. Mech. Test. Orthop. Implant. 2017, 131–141. [Google Scholar]
- Caiti, G.; Dobbe, J.G.G.; Bervoets, E.; Beerens, M.; Strackee, S.D.; Strijkers, G.J.; Streekstra, G.J. Biomechanical considerations in the design of patient-specific fixation plates for the distal radius. Med. Biol. Eng. Comput. 2018, 57, 1099–1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, K.R.; An, Y.H.; Draughn, R.A. Finite Element Analysis for Evaluating Mechanical Properties of the Bone-Implant Interface. In Mechanical Testing of Bone and the Bone-Implant Interface; CRC Press: Bora Raton, FL, USA, 2000; pp. 567–580. [Google Scholar]
- Srirekha, A.; Kusum, B. Infinite to finite: An overview of finite element analysis. Indian J. Dent. Res. 2010, 21, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Segalman, D.; Reese, G.; Field, R.; Fulcher, C. Estimating the Probability Distribution of Von Mises Stress for Structures Undergoing Random Excitation. J. Vib. Acoust. ASME 2000, 122, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Tsumanuma, K.T.S.; Caldas, R.A.; Silva, I.D.; Miranda, M.E.; Brandt, W.C.; Vitti, R.P. Finite Element Analysis of Stress in Anterior Prosthetic Rehabilitation with Zirconia Implants with and without Cantilever. Eur. J. Dent. 2021, 15, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S. Fatigue of Ti-6Al-4V. In Biomedical Engineering—Technical Applications in Medicine; InTech: London, UK, 2012; pp. 75–92. [Google Scholar]
- Modi, H.; Parmar, D.; Patel, D. Development of 3D printed human collar bone fixture plate implant classified by individual CT and MRI scan digital base. Int. J. Mech. Prod. Eng. 2018, 6, 43–46. [Google Scholar]
- Goulart, D.; Kemmoku, D.T.; Noritomi, P.Y.; De Moraes, M. Development of a Titanium Plate for Mandibular Angle Fractures with a Bone Defect in the Lower Border: Finite Element Analysis and Mechanical Test. J. Oral Maxillofac. Res. 2015, 6, e5. [Google Scholar]
No. | Mechanical Properties | Value |
---|---|---|
1. | Density | 4430 [kg/m3] |
2. | Young’s Modulus | 113.8 [GPa] |
3. | Poisson’s Ratio | 0.342 |
4. | Thermal Expansion Coefficient | 8.6 [µm/m·°C] |
5. | Yield Strength | 880 × 103 [MPa] |
6. | Tensile Strength | 950 × 103 [MPa] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurniawan, J.; Lin, S.-Y.; Wang, W.-T. Development and Finite Element Analysis of a Novel Bent Bone Plate. Appl. Sci. 2022, 12, 10900. https://doi.org/10.3390/app122110900
Kurniawan J, Lin S-Y, Wang W-T. Development and Finite Element Analysis of a Novel Bent Bone Plate. Applied Sciences. 2022; 12(21):10900. https://doi.org/10.3390/app122110900
Chicago/Turabian StyleKurniawan, Joyceline, Shen-Yung Lin, and Wen-Teng Wang. 2022. "Development and Finite Element Analysis of a Novel Bent Bone Plate" Applied Sciences 12, no. 21: 10900. https://doi.org/10.3390/app122110900
APA StyleKurniawan, J., Lin, S. -Y., & Wang, W. -T. (2022). Development and Finite Element Analysis of a Novel Bent Bone Plate. Applied Sciences, 12(21), 10900. https://doi.org/10.3390/app122110900