Construction and Application of Detection Model for Leucine and Tyrosine Content in Golden Tartary Buckwheat Based on Near Infrared Spectroscopy
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Test Method
2.2.1. Spectral Collection of Tartary Buckwheat Leaves
2.2.2. Determination of Leucine and Tyrosine in Tartary Buckwheat Leaves
2.3. Data Analysis and Processing
3. Results
3.1. Leucine and Tyrosine Contents in Tartary Buckwheat Leaves
3.2. Near Infrared Spectrum of Tartary Buckwheat Leaves
3.3. Establishment of the Model
3.3.1. Influence of Spectral Region on the Model
3.3.2. Influence of Modeling Samples on the Model
3.3.3. Optimization of the Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Q.F. Plant Sciences on Genus Fagopyrum, 1st ed.; Science Press: Beijing, China, 2012; pp. 1–11, 220–226. [Google Scholar]
- Wang, L.Y.; Rong, Y.P.; Huang, J.; Chen, Q.F. Analysis and evaluation of the flavonoid content of rhizomes of 211 different Golden buckwheat accessions (Fagopyrum cymosum complex). J. Guizhou Norm. Univ. Nat. Sci. 2019, 37, 25–30, 48. [Google Scholar]
- Tong, X.D.; Mao, Y.X. Bacteriostatic Test in Vitro of Fagopyrum Dibotrys Capsules. Clin. J. Trad. Chin. Med. 2022, 34, 310–313. [Google Scholar]
- Chen, Q.F.; Huang, X.Y.; Li, H.Y.; Yang, L.J.; Cui, Y.S. Recent progress in perennial buckwheat development. Sustainability 2018, 10, 536. [Google Scholar] [CrossRef] [Green Version]
- Luo, Q.L.; Zhou, M.L.; Chen, S.S.; Ruan, J.J. Research Progress of Active Components and Medicinal Value of Fagopyrum cymosum. J. Mtn. Agric. Biol. 2020, 39, 1–13. [Google Scholar]
- Geng, Q.; Liu, B.; Zhao, P.C.; Xiong, Y.B.; Li, L.; Yi, J.F.; Lv, C. Molecular mechanism of Fagopyri Dibotryis Rhizoma in treatment of acute lung injury based on network pharmacology and in vitro experiments. Chn. J. Chin. Mar. Med. 2021, 46, 4816–4823. [Google Scholar]
- Hou, Z.P.; Zheng, X.; Chen, Q.; Wu, R.Q. Nutritional value, bioactivity of extract and application in animal production of Fagopyrum dibotrys. Chin. J. Anim. Nutr. 2021, 33, 3019–3027. [Google Scholar]
- Liu, L.N.; Yan, J.; Kang, A. Influence of jinqiaomai pill combined with SASP on treating UC with dampness-heat in large intestine and its effect on TLR4/NLRP3 signal pathway. J. Nanjing Univ. Tradit. Chin. Med. 2021, 37, 16–20. [Google Scholar]
- Zhu, L.W.; Zhou, Y.; Cai, F.; Deng, J.; Huang, J.; Zhang, X.N.; Zhang, J.G.; Chen, Q.F. Quantitative analysis of perennial buckwheat leaves protein and GABA using near infrared spectroscopy. Spectrosc. Spect. Anal. 2020, 40, 2421–2426. [Google Scholar]
- Luo, G.B.; Shen, L.S.; Song, Y.H.; Yu, K.; Ji, J.J.; Zhang, C.; Yang, W.L.; Li, X.; Sun, J.Z.; Zhan, K.H.; et al. The MYB family transcription factor TuODORANT1 from Triticum urartu and the homolog TaODORANT1 from Triticum aestivum inhibit seed storage protein synthesis in wheat. Plant Biotechnol. J. 2021, 19, 1863–1877. [Google Scholar] [CrossRef]
- Maseta, E.; Mosha, T.C.; Nyaruhucha, C.; Laswai, H. Nutritional quality of quality protein maize-based supplementary foods. Nutr. Food Sci. 2017, 47, 42–52. [Google Scholar] [CrossRef]
- Qin, P.Y.; Wang, Q.; Shan, F.; Hou, Z.H.; Ren, G.X. Nutritional composition and flavonoids content of flour from different buckwheat cultivars. Int. J. Food Sci. Tech. 2010, 45, 951–958. [Google Scholar] [CrossRef]
- Tao, L.L.; Huang, W.; Yang, X.J.; Cao, Z.Y.; Deng, J.M.; Wang, S.S.; Mei, F.Y.; Zhang, M.W.; Zhang, X. Correlations between near infrared spectra and molecular structures of 20 standard amino acids. Spectrosc. Spect. Anal. 2016, 36, 2766–2773. [Google Scholar]
- Dong, E.H.; Tan, H.; Yang, H.B.; Zhao, H.B.; Ma, K.; Yuan, X. Rapid determination of free amino acids in tea by NIR spectroscopy. J. Henan Agri. Sci. 2012, 41, 44–48. [Google Scholar]
- Chu, J.; Dong, R.R.; Wang, X.; Li, J.; Zhang, X.F.; Lu, F.J.; Xu, N. Analysis of chemical quality difference between tea leaves and tea beverage using near infrared spectroscopy combined with chemometrics. J. Liaoning Univ. Tradit. Chin. Med. 2021, 23, 39–45. [Google Scholar]
- Wei, X.; Xu, N.; Wu, D.; He, Y. Determination of branched-amino acid content in fermented cordyces sinensis mycelium by using FT-NIR spectroscopy technique. Food Bioprocess Tech. 2014, 7, 184–190. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, N.; Wang, S.S.; Pan, L. Nondestructive determination of GABA in germinated brown rice with near infrared spectroscopy based on wavelet transform denoising. Int. J. Agric. Biol. Eng. 2021, 14, 182–187. [Google Scholar] [CrossRef]
- Zhang, B. NIR Spectroscopy Model Construction and Application for Amino Acid Composition in Rice Grain. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2010. [Google Scholar]
- Deng, Q.Q.; Lu, Q.; Liu, H.; Hong, Y.B.; Li, H.F.; Liang, X.Q.; Wang, R.F.; Li, S.X.; Chen, X.P. Evaluation of high and low oleic acid peanuts based on widely targeted lipidomics and near infrared spectroscopy. Guangdong Agric. Sci. 2021, 48, 54–63. [Google Scholar]
- Huang, W.; Tao, L.L.; Zhang, X.; Yang, X.J.; Hao, X.W. Prediction of amino acids in freeze dried pork by near infrared reflectance spectroscopy. Indian J. Anim. Sci. 2018, 88, 1078–1084. [Google Scholar]
- Zhang, J.; Guo, J.; Zhang, M.L.; Zhang, X.; E, J.J. Establishment of rapid detection model of buckwheat nutritional components based on near infrared spectroscopy. J. Chin. Cereals Oils Assoc. 2020, 6, 151–158. [Google Scholar]
- Zhu, L.W.; Yan, J.X.; Huang, J.; Shi, T.X.; Cai, F.; Li, H.Y.; Chen, Q.F.; Chen, Q.J. Rapid determination of amino acids in golden tartary buckwheat based on near infrared spectroscopy and artificial neural network. Spectrosc. Spect. Anal. 2022, 42, 49–55. [Google Scholar]
- Cheng, Y.J.; Chen, X.W.; Zhang, S.S.; Lou, J.; Zhang, T.; Wang, Z.Z.; Mao, Y.C.; Sha, R.Y.; Mao, J.W. Analysis of amino acids and in vitro antioxidant activity of Cudrania tricuspidata Jiaosu. Sci. Technol. Food Ind. 2018, 39, 1–7, 12. [Google Scholar]
- Li, J.H.; Chen, B.; Ma, X.; Zhao, L.L.; Lao, C.L.; Zhang, W.J.; Duan, J.; Tao, S.; Zhang, L.D.; Yan, Y.L. Development of specific near infrared analysis software. Mod. Sci. Instrum. 2008, 4, 35–38. [Google Scholar]
- Qin, L.; Liu, H.; Du, P.; Dong, W.Z.; Huang, B.Y.; Han, S.Y.; Zhang, Z.X.; Qi, F.Y.; Zhang, X. Determination of sucrose content in peanut seed kernel based on near infrared spectroscopy. Chin. J. Oil Crop Sci. 2016, 38, 666–671. [Google Scholar]
- Bian, N.F.; Tong, F.; Gong, J.L.; Sun, D.L.; Shen, Y.; Wang, X.; Xing, X.H.; Wang, X.J. Establishment of near infrared spectroscopy model for predicting sucrose content of peanut seed and application in mutants selection. J. Nucl. Agric. Sci. 2022, 36, 251–258. [Google Scholar]
- Wang, F.H.; Zhu, H.L.; Yang, J.; Xi, Z.R. Research on determination method of starch, protein and total flavonoids content in buckwheat by Near-infrared spectroscopy. Sci. Technol. Food Ind. 2014, 35, 281–284. [Google Scholar] [CrossRef]
- Guo, H.M.; Yang, X.S.; Liu, S.C.; Li, J.C.; Ren, G.X. Rapid determination of protein and starch in buckwheat by near-infrared reflectance spectroscopy. J. Plant Genet. Resour. 2017, 18, 467–471. [Google Scholar]
- Zou, T.T.; Dou, Y.; Wang, Y.; Liu, Y.; Duan, Z.Y.; Zhang, Q.C. Non-destructive determination of starch category by using C-SVM and ν-SVM on NIR spectroscopy. Sci. Technol. Food Ind. 2013, 34, 317–319. [Google Scholar]
- Kovalenko, I.V.; Rippke, G.R.; Hurburgh, C.R. Determination of amino acid composition of soybeans (Glycine max) by near-infrared spectroscopy. J. Agric. Food Chem. 2006, 54, 3485–3491. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.M.; Barimah, A.O.; Yin, L.M.; Chen, Q.S.; Shi, J.Y.; EI-Seedi, H.R.; Zou, X.B. Intelligent evaluation of taste constituents and polyphenols-to-amino acids ratio in matcha tea power using near infrared spectroscopy. Food Chem. 2021, 353, 29372. [Google Scholar] [CrossRef]
- Platov, Y.T.; Metlenkin, D.A.; Platova, R.A.; Rassulov, A.I.; Vereshchagin, A.I.; Marin, V.A. Buckwheat identification by combined uv-vis-nir spectroscopy and multivariate analysis. J. Appl. Spectrosc. 2021, 88, 723–730. [Google Scholar] [CrossRef]
- Ren, G.X.; Ning, J.M.; Zhang, Z.Z. Multi-variable selection strategy based on near-infrared spectra for the rapid description of dianhong black tea quality. Spectrochim. Acta A 2020, 245, 118918. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.Z.; Zhang, L.; Li, J.B.; Liu, C.L.; Sun, X.R.; Yu, L. Detection Model of Moisture Content of Single Maize Seed Based on Hyperspectral Image and Ensemble Learning. Trans. Chin. Soc. Agric. Mach. 2022, 5, 302–308. [Google Scholar]
Amino Acids | Leu (mg/g) | Tyr (mg/g) |
---|---|---|
Minimum | 8.345 | 1.754 |
Maximum | 29.673 | 5.796 |
Average | 14.185 | 3.829 |
Spectral Regions/cm−1 | Principal Component | Calibration Set | Validation Set | ||||
---|---|---|---|---|---|---|---|
R2 | SEC | RSD/% | R2 | SEC | RSD/% | ||
4000–5000 | 12 | 0.9211 | 0.62 | 4.74 | 0.9130 | 0.44 | 3.41 |
4000–6000 | 13 | 0.9298 | 0.58 | 4.47 | 0.9129 | 0.44 | 3.42 |
4000–7000 | 15 | 0.9440 | 0.52 | 3.99 | 0.9190 | 0.42 | 3.29 |
4000–8000 | 16 | 0.9423 | 0.53 | 4.05 | 0.9282 | 0.40 | 3.10 |
4000–9000 | 13 | 0.9320 | 0.58 | 4.40 | 0.9370 | 0.37 | 2.91 |
4000–10,000 | 13 | 0.9318 | 0.58 | 4.41 | 0.9371 | 0.37 | 2.90 |
5000–9000 | 11 | 0.9210 | 0.62 | 4.74 | 0.9205 | 0.42 | 3.26 |
5000–8000 | 14 | 0.9285 | 0.59 | 4.51 | 0.9124 | 0.44 | 3.43 |
Average | 13 | 0.9313 | 0.58 | 4.41 | 0.9225 | 0.41 | 3.22 |
Spectral Regions/cm−1 | Principal Component | Calibration Set | Validation Set | ||||
---|---|---|---|---|---|---|---|
R2 | SEC | RSD/% | R2 | SEC | RSD/% | ||
4000–5000 | 17 | 0.8730 | 0.18 | 6.32 | 0.8690 | 0.17 | 6.59 |
4000–6000 | 16 | 0.8730 | 0.17 | 6.49 | 0.8617 | 0.17 | 6.54 |
4000–7000 | 15 | 0.8589 | 0.18 | 6.82 | 0.8687 | 0.17 | 6.37 |
4000–8000 | 17 | 0.8749 | 0.17 | 6.45 | 0.8727 | 0.17 | 6.28 |
4000–9000 | 18 | 0.8936 | 0.16 | 5.95 | 0.8774 | 0.16 | 6.16 |
4000–10,000 | 18 | 0.9076 | 0.15 | 5.54 | 0.9042 | 0.15 | 5.44 |
5000–9000 | 16 | 0.8887 | 0.16 | 6.08 | 0.8623 | 0.17 | 6.53 |
5000–8000 | 19 | 0.9298 | 0.13 | 4.83 | 0.8929 | 0.15 | 5.75 |
Average | 17 | 0.8874 | 0.16 | 6.06 | 0.8761 | 0.16 | 6.21 |
Calibration Set: Validation Set | Principal Component | Calibration Set | Validation Set | ||||
---|---|---|---|---|---|---|---|
R2 | SEC | RSD/% | R2 | SEC | RSD/% | ||
1:1 | 16 | 0.9429 | 0.50 | 3.82 | 0.9239 | 0.57 | 4.41 |
2:1 | 20 | 0.9628 | 0.37 | 2.87 | 0.9655 | 0.43 | 3.32 |
3:1 | 18 | 0.9474 | 0.49 | 3.80 | 0.9435 | 0.44 | 3.37 |
4:1 | 16 | 0.9423 | 0.53 | 4.05 | 0.9282 | 0.40 | 3.10 |
5:1 | 20 | 0.9612 | 0.41 | 3.16 | 0.9284 | 0.55 | 4.22 |
6:1 | 21 | 0.9493 | 0.47 | 3.58 | 0.9456 | 0.49 | 3.81 |
Average | 19 | 0.9510 | 0.46 | 3.55 | 0.9392 | 0.48 | 3.71 |
Calibration Set: Validation Set | Principal Component | Calibration Set | Validation Set | ||||
---|---|---|---|---|---|---|---|
R2 | SEC | RSD% | R2 | SEC | RSD% | ||
1:1 | 15 | 0.8660 | 0.18 | 6.63 | 0.8496 | 0.19 | 7.03 |
2:1 | 20 | 0.9326 | 0.12 | 4.41 | 0.8867 | 0.18 | 6.79 |
3:1 | 19 | 0.9164 | 0.14 | 5.41 | 0.8879 | 0.15 | 5.44 |
4:1 | 18 | 0.9076 | 0.15 | 5.54 | 0.9042 | 0.15 | 5.44 |
5:1 | 17 | 0.8749 | 0.17 | 6.45 | 0.8727 | 0.17 | 6.28 |
6:1 | 16 | 0.8777 | 0.17 | 6.33 | 0.8672 | 0.17 | 6.58 |
Average | 18 | 0.8959 | 0.16 | 5.80 | 0.8781 | 0.17 | 6.26 |
Preprocessing Methods | Principal Component | Calibration Set | Validation Set | ||||
---|---|---|---|---|---|---|---|
R2/% | SEC | RSD% | R2/% | SEC | RSD% | ||
No-preprocessing | 21 | 0.9493 | 0.47 | 3.58 | 0.9456 | 0.49 | 3.81 |
Centralization | 19 | 0.9587 | 0.42 | 3.23 | 0.9517 | 0.46 | 3.59 |
Range normalization | 19 | 0.9560 | 0.44 | 3.34 | 0.9427 | 0.50 | 3.91 |
Vector correction | 17 | 0.9523 | 0.45 | 3.47 | 0.9522 | 0.46 | 3.57 |
Scatter correction | 19 | 0.9621 | 0.40 | 3.10 | 0.9567 | 0.43 | 3.40 |
First derivative (11) | 13 | 0.9529 | 0.45 | 3.45 | 0.9502 | 0.47 | 3.65 |
First derivative (13) | 13 | 0.9527 | 0.45 | 3.46 | 0.9245 | 0.57 | 4.49 |
First derivative (15) | 14 | 0.9501 | 0.46 | 3.55 | 0.9475 | 0.48 | 3.74 |
First derivative (17) | 15 | 0.9519 | 0.46 | 3.48 | 0.9472 | 0.48 | 3.76 |
Second derivative (11) | 20 | 0.9672 | 0.38 | 2.88 | 0.9537 | 0.45 | 3.52 |
Second derivative (13) | 20 | 0.9639 | 0.39 | 3.02 | 0.9631 | 0.40 | 3.14 |
Second derivative (15) | 20 | 0.9618 | 0.41 | 3.11 | 0.9613 | 0.41 | 3.22 |
Second derivative (17) | 21 | 0.9670 | 0.38 | 2.89 | 0.9631 | 0.40 | 3.14 |
Average | 18 | 0.9574 | 0.43 | 3.27 | 0.9507 | 0.46 | 3.61 |
Preprocessing Methods | Principal Component | Calibration Set | Validation Set | ||||
---|---|---|---|---|---|---|---|
R2 | SEC | RSD% | R2 | SEC | RSD% | ||
No-preprocessing | 18 | 0.9076 | 0.15 | 5.54 | 0.9042 | 0.15 | 5.44 |
Centralization | 17 | 0.9009 | 0.15 | 5.74 | 0.8861 | 0.16 | 5.94 |
Range normalization | 19 | 0.9248 | 0.13 | 5.00 | 0.9060 | 0.14 | 5.39 |
Vector correction | 17 | 0.9140 | 0.14 | 5.34 | 0.9059 | 0.14 | 5.40 |
Scatter correction | 18 | 0.9157 | 0.14 | 5.29 | 0.8946 | 0.15 | 5.71 |
First derivative (11) | 11 | 0.9016 | 0.15 | 5.72 | 0.9012 | 0.15 | 5.53 |
First derivative (13) | 11 | 0.8991 | 0.15 | 5.79 | 0.8808 | 0.16 | 6.07 |
First derivative (15) | 14 | 0.9199 | 0.14 | 5.16 | 0.9074 | 0.14 | 5.35 |
First derivative (17) | 15 | 0.9182 | 0.14 | 5.21 | 0.9071 | 0.14 | 5.36 |
Second derivative (11) | 16 | 0.8855 | 0.16 | 6.17 | 0.8806 | 0.16 | 6.08 |
Second derivative (13) | 18 | 0.9135 | 0.14 | 5.36 | 0.9082 | 0.14 | 5.33 |
Second derivative (15) | 17 | 0.8964 | 0.16 | 5.87 | 0.8955 | 0.15 | 5.69 |
Second derivative (17) | 19 | 0.9204 | 0.14 | 5.14 | 0.9138 | 0.14 | 5.16 |
Average | 16 | 0.9090 | 0.15 | 5.49 | 0.8993 | 0.15 | 5.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Damaris, R.N.; Lv, Y.; Du, Q.; Shi, T.; Deng, J.; Chen, Q. Construction and Application of Detection Model for Leucine and Tyrosine Content in Golden Tartary Buckwheat Based on Near Infrared Spectroscopy. Appl. Sci. 2022, 12, 11051. https://doi.org/10.3390/app122111051
Zhu L, Damaris RN, Lv Y, Du Q, Shi T, Deng J, Chen Q. Construction and Application of Detection Model for Leucine and Tyrosine Content in Golden Tartary Buckwheat Based on Near Infrared Spectroscopy. Applied Sciences. 2022; 12(21):11051. https://doi.org/10.3390/app122111051
Chicago/Turabian StyleZhu, Liwei, Rebecca Njeri Damaris, Yong Lv, Qianxi Du, Taoxiong Shi, Jiao Deng, and Qingfu Chen. 2022. "Construction and Application of Detection Model for Leucine and Tyrosine Content in Golden Tartary Buckwheat Based on Near Infrared Spectroscopy" Applied Sciences 12, no. 21: 11051. https://doi.org/10.3390/app122111051
APA StyleZhu, L., Damaris, R. N., Lv, Y., Du, Q., Shi, T., Deng, J., & Chen, Q. (2022). Construction and Application of Detection Model for Leucine and Tyrosine Content in Golden Tartary Buckwheat Based on Near Infrared Spectroscopy. Applied Sciences, 12(21), 11051. https://doi.org/10.3390/app122111051