Estimating Calorific Value of Coal Using Laser-Induced Breakdown Spectroscopy through Statistical Algorithms: Correlation Analysis, Partial Least Squares, and Signal-to-Noise Ratio
Abstract
:Featured Application
Abstract
1. Introduction
2. Experiments
2.1. Experimental Setup
2.2. Sample Preparation
3. Theory
3.1. Grubbs Test
3.2. Partial Least Squares
3.3. Signal-to-Noise Ratio
3.4. Correlation Analysis
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hwang, Z.W.; Teng, Y.Y.; Li, K.P.; Sneddon, J. Interaction of a laser beam with metals. Part I: Quantitative studies of plasma emission. Appl. Spectrosc. 1991, 45, 435–441. [Google Scholar] [CrossRef]
- Aguilera, J.A.; Aragon, C.; Campos, J. Determination of carbon content in steel using laser-induced breakdown spectroscopy. Appl. Spectrosc. 1992, 46, 1382–1387. [Google Scholar] [CrossRef]
- Cremers, D.A.; Radziemski, L.J. Direct detection of beryllium on filters using the laser spark. Appl. Spectrosc. 1985, 39, 57–63. [Google Scholar] [CrossRef]
- Wachter, J.R.; Cremers, D.A. Determination of uranium in solution using laser-induced breakdown spectroscopy. Appl. Spectrosc. 1987, 41, 1042–1048. [Google Scholar] [CrossRef]
- Capitelli, F.; Colao, F.; Provenzano, M.R.; Fantoni, R.; Brunetti, G.; Senesi, N. Determination of heavy metals in soils by laser induced breakdown spectroscopy. Geoderma 2002, 106, 45–62. [Google Scholar] [CrossRef]
- Lazic, V.; Colao, F.; Fantoni, R.; Spizzicchino, V. Laser-induced breakdown spectroscopy in water: Improvement of the detection threshold by signal processing. Spectrochim. Acta Part B At. Spectrosc. 2005, 60, 1002–1013. [Google Scholar] [CrossRef]
- Gamal, Y.E.D.; Omar, M.M. Study of the electron kinetic processes in laser-induced breakdown of electronegative gases over an extended wavelength range. Radiat. Phys. Chem. 2001, 62, 361–370. [Google Scholar] [CrossRef]
- Dong, M.; Lu, J.; Yao, S.; Li, J.; Li, J.; Zhong, Z.; Lu, W. Application of LIBS for direct determination of volatile matter content in coal. J. Anal. At. Spectrom. 2011, 26, 2183–2188. [Google Scholar] [CrossRef]
- Kuzuya, M.; Aranami, H. Analysis of a high-concentration copper in metal alloys by emission spectroscopy of a laser-produced plasma in air at atmospheric pressure. Spectrochim. Acta Part B At. Spectrosc. 2000, 55, 1423–1430. [Google Scholar] [CrossRef]
- Kuzuya, M.; Murakami, M.; Maruyama, N. Quantitative analysis of ceramics by laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2003, 58, 957–965. [Google Scholar] [CrossRef]
- Yuan, T.; Wang, Z.; Lui, S.L.; Fu, Y.; Li, Z.; Liu, J.; Ni, W. Coal property analysis using laser-induced breakdown spectroscopy. J. Anal. At. Spectrom. 2013, 28, 1045–1053. [Google Scholar] [CrossRef]
- Ismail, M.A.; Imam, H.; Elhassan, A.; Youniss, W.T.; Harith, M.A. LIBS limit of detection and plasma parameters of some elements in two different metallic matrices. J. Anal. At. Spectrom. 2004, 19, 489–494. [Google Scholar] [CrossRef]
- Li, J.; Lu, J.; Lin, Z.; Gong, S.; Xie, C.; Chang, L.; Li, P. Effects of experimental parameters on elemental analysis of coal by laser-induced breakdown spectroscopy. Opt. Laser Technol. 2009, 41, 907–913. [Google Scholar] [CrossRef]
- Sivakumar, P.; Taleh, L.; Markushin, Y.; Melikechi, N. Packing density effects on the fluctuations of the emission lines in laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2014, 92, 84–89. [Google Scholar] [CrossRef]
- Feng, J.; Wang, Z.; West, L.; Li, Z.; Ni, W. A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy. Anal. Bioanal. Chem. 2011, 400, 3261–3271. [Google Scholar] [CrossRef]
- Li, W.; Lu, J.; Dong, M.; Lu, S.; Yu, J.; Li, S.; Liu, J. Quantitative analysis of calorific value of coal based on spectral preprocessing by laser-induced breakdown spectroscopy (LIBS). Energy Fuels 2017, 32, 24–32. [Google Scholar] [CrossRef]
- Lee, Y.; Choi, D.; Gong, Y.; Nam, S.H.; Nah, C. Laser-induced plasma emission spectra of halogens in the helium gas flow and pulsed jet. Anal. Sci. Technol. 2013, 26, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Cremers, D.A.; Radziemski, L.J. Handbook of Laser-Induced Breakdown Spectroscopy; John Wiley & Sons: Chichester, UK, 2006; pp. 53–58. [Google Scholar]
- Gazeli, O.; Stefas, D.; Couris, S. Sulfur detection in soil by laser induced breakdown spectroscopy assisted by multivariate analysis. Materials 2021, 14, 541. [Google Scholar] [CrossRef]
- Kathiravale, S.; Yunus, M.N.M.; Sopian, K.; Samsuddin, A.H.; Rahman, R.A. Modeling the heating value of municipal solid waste. Fuel 2003, 82, 1119–1125. [Google Scholar] [CrossRef]
- Lazarek, L.; Antończak, A.J.; Wójcik, M.R.; Drzymała, J.; Abramski, K.M. Evaluation of the laser-induced breakdown spectroscopy technique for determination of the chemical composition of copper concentrates. Spectrochim. Acta Part B At. Spectrosc. 2014, 97, 74–78. [Google Scholar] [CrossRef]
- Yaroshchyk, P.; Death, D.L.; Spencer, S.J. Quantitative measurements of loss on ignition in iron ore using laser-induced breakdown spectroscopy and partial least squares regression analysis. Appl. Spectrosc. 2010, 64, 1335–1341. [Google Scholar] [CrossRef] [PubMed]
- Amador-Hernández, J.; García-Ayuso, L.E.; Fernández-Romero, J.M.; de Castro, M.L. Partial least squares regression for problem solving in precious metal analysis by laser induced breakdown spectrometry. J. Anal. Spectrom. 2000, 15, 587–593. [Google Scholar] [CrossRef]
- Zhang, W.; Zhuo, Z.; Lu, P.; Tang, J.; Tang, H.; Lu, J.; Xing, T.; Wang, Y. LIBS analysis of the ash content, volatile matter, and calorific value in coal by partial least squares regression based on ash classification. J. Anal. At. Spectrom. 2020, 35, 1621–1631. [Google Scholar] [CrossRef]
- Fisher, B.T.; Johnsen, H.A.; Buckley, S.G.; Hahn, D.W. Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals. Appl. Spectrosc. 2001, 55, 1312–1319. [Google Scholar] [CrossRef]
- Gornushkin, I.B.; Smith, B.W.; Nasajpour, H.; Winefordner, J.D. Identification of solid materials by correlation analysis using a microscopic laser-induced plasma spectrometer. Anal. Chem. 1999, 71, 5157–5164. [Google Scholar] [CrossRef]
Coal Name | Concentration (wt%) | |||
---|---|---|---|---|
C | H | O | S | |
GUNVOR | 74.4 | 5.21 | 12.46 | 0.71 |
MSJ-1 | 69.8 | 5.16 | 16.20 | 0.93 |
MSJ-2 | 67.5 | 5.27 | 17.27 | 0.84 |
LANNA HARITA | 68.3 | 5.08 | 18.03 | 0.53 |
MACQUARIE | 67.5 | 4.81 | 18.27 | 1.10 |
PEABODY | 66.3 | 5.01 | 17.96 | 0.67 |
KPU | 65.6 | 5.25 | 20.97 | 0.10 |
Coal Name | Concentration (%) | Calorific Value (kcal/kg) | Chemical Analysis (kcal/kg) | Error | |||
---|---|---|---|---|---|---|---|
C | H | O | S | ||||
GUNVOR | 75.03 | 5.27 | 12.55 | 0.46 | 7348.22 | 7360 | 0.16 |
MSJ-1 | 68.7 | 5.21 | 13.88 | 0.52 | 6760.15 | 6915 | 2.24 |
MSJ-2 | 68.1 | 5.15 | 17.96 | 0.84 | 6522.44 | 6852 | 4.81 |
LANNA HARITA | 67.55 | 5.01 | 18.23 | 0.72 | 6415.43 | 6619 | 3.08 |
MACQUARIE | 67.32 | 4.48 | 17.43 | 0.64 | 6246.87 | 6705 | 6.83 |
PEABODY | 66.3 | 4.77 | 18.03 | 0.58 | 6237.19 | 6630 | 5.92 |
KPU | 64.18 | 4.08 | 10.46 | 0.67 | 6156.22 | 6619 | 6.99 |
Coal Name | Concentration (%) | Calorific Value (kcal/kg) | Chemical Analysis (kcal/kg) | Error | |||
---|---|---|---|---|---|---|---|
C | H | O | S | ||||
GUNVOR | 74.01 | 4.27 | 17.31 | 0.54 | 6717.97 | 7360 | 8.72 |
MSJ-1 | 67.23 | 4.42 | 15.96 | 0.47 | 6278.41 | 6915 | 9.21 |
MSJ-2 | 66.42 | 4.23 | 19.79 | 0.75 | 5988.81 | 6852 | 12.60 |
LANNA HARITA | 69.01 | 3.24 | 18.13 | 0.76 | 5928.66 | 6619 | 10.43 |
MACQUARIE | 67.8 | 3.71 | 18.94 | 0.69 | 5956.39 | 6705 | 11.16 |
PEABODY | 65.9 | 2.77 | 17.65 | 0.6 | 5532.49 | 6630 | 16.55 |
KPU | 63.59 | 2.02 | 9.32 | 0.62 | 5446.66 | 6619 | 17.71 |
Coal Name | Concentration (%) | Calorific Value (kcal/kg) | Chemical Analysis (kcal/kg) | Error | |||
---|---|---|---|---|---|---|---|
C | H | O | S | ||||
GUNVOR | 73.3 | 3.77 | 15.54 | 0.89 | 6572.42 | 7360 | 10.70 |
MSJ-1 | 65.44 | 3.85 | 17.98 | 0.68 | 5855.07 | 6915 | 15.33 |
MSJ-2 | 68.75 | 3.48 | 20.35 | 0.79 | 5895.41 | 6852 | 13.96 |
LANNA HARITA | 68.08 | 3.18 | 18.18 | 0.61 | 5827.31 | 6619 | 11.96 |
MACQUARIE | 67.2 | 2.48 | 19.46 | 0.86 | 5465.48 | 6705 | 18.49 |
PEABODY | 63.49 | 2.18 | 18.21 | 0.65 | 5111.45 | 6630 | 22.90 |
KPU | 62.94 | 2.14 | 11.12 | 0.57 | 5356.83 | 6619 | 19.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-M.; Park, K.-H.; Ryu, C.-M.; Choi, J.-H.; Moon, S.-J. Estimating Calorific Value of Coal Using Laser-Induced Breakdown Spectroscopy through Statistical Algorithms: Correlation Analysis, Partial Least Squares, and Signal-to-Noise Ratio. Appl. Sci. 2022, 12, 11517. https://doi.org/10.3390/app122211517
Kim S-M, Park K-H, Ryu C-M, Choi J-H, Moon S-J. Estimating Calorific Value of Coal Using Laser-Induced Breakdown Spectroscopy through Statistical Algorithms: Correlation Analysis, Partial Least Squares, and Signal-to-Noise Ratio. Applied Sciences. 2022; 12(22):11517. https://doi.org/10.3390/app122211517
Chicago/Turabian StyleKim, Soo-Min, Kyung-Hoon Park, Choong-Mo Ryu, Jung-Hyun Choi, and Seung-Jae Moon. 2022. "Estimating Calorific Value of Coal Using Laser-Induced Breakdown Spectroscopy through Statistical Algorithms: Correlation Analysis, Partial Least Squares, and Signal-to-Noise Ratio" Applied Sciences 12, no. 22: 11517. https://doi.org/10.3390/app122211517
APA StyleKim, S. -M., Park, K. -H., Ryu, C. -M., Choi, J. -H., & Moon, S. -J. (2022). Estimating Calorific Value of Coal Using Laser-Induced Breakdown Spectroscopy through Statistical Algorithms: Correlation Analysis, Partial Least Squares, and Signal-to-Noise Ratio. Applied Sciences, 12(22), 11517. https://doi.org/10.3390/app122211517