Effectiveness of Food Processing By-Products as Dust Suppressants for Exposed Mine Soils: Results from Laboratory Experiments and Field Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mine Soil
2.2. By-Products from the Food Industry
2.2.1. Chicory Vinasses
2.2.2. Corn Steep Liquor
2.2.3. Decantation Syrup
2.2.4. Palatinose Molasses
2.3. Laboratory Experiments
2.3.1. Materials
2.3.2. Experimental Methodology
2.4. Field Trials
2.4.1. Test Site and Materials
2.4.2. Experimental Methodology
3. Results
3.1. Laboratory Testing
3.1.1. Effect of Rainfall Intensities on Wind-Induced Soil Losses
3.1.2. Effect of Wet–Dry Cycles on Wind-Induced Soil Losses
3.2. Field Trials
3.2.1. Measured Dust Concentrations
3.2.2. Visual Inspection of Soil Surfaces
4. Discussion
4.1. Laboratory Experiments
4.2. Field Trials
4.3. Possible Applications of Food Processing By-Products as Dust Suppressants at Mine Sites
4.3.1. Technical Aspects
4.3.2. Financial Considerations
4.3.3. Environmental Issues and Implications
4.4. Outlook
5. Conclusions
- Carbohydrate- and protein-rich by-products from food processing reduce PM emissions from sandy mine soils as tested in the laboratory and field trials, indicating their potential to be applied as dust suppressants at mine and mineral processing sites.
- Rainfall impairs the effectiveness of tested biomaterials due to progressive leaching and loss of the amendments from treated soils. While rain may decrease the additives’ concentration in surface layers, treated soil surfaces remain physically intact.
- Soil loss data from laboratory tests indicate that biomaterials’ effectiveness decreases with repetitive wet–dry cycles. Exposure of treated mine soils to increasing rainfall intensities led to decreasing soil losses, possibly due to enhanced inter-particle bonding, incomplete evaporation of infiltrated water or the augmented water retention capacity of the soil.
- There is a clear need for standardized simulated dust suppression tests.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Days after Application | Date | Temperature (°C) | Humidity (%) | Global Radiation (W/m2) | Precipitation (L/m2) | ||
---|---|---|---|---|---|---|---|
Min | Max | Mean | |||||
0 | 17.07.20 | 18.61 | 21.84 | 20.10 | 68.48 | 217.51 | 0.01 |
1 | 18.07.20 | 12.90 | 27.56 | 21.21 | 65.89 | 292.44 | 0.29 |
2 | 19.07.20 | 15.21 | 28.30 | 22.24 | 59.82 | 278.16 | 0.08 |
3 | 20.07.20 | 14.33 | 22.48 | 17.78 | 68.82 | 135.69 | 0.00 |
4 | 21.07.20 | 10.04 | 21.78 | 16.04 | 62.25 | 306.56 | 0.05 |
5 | 22.07.20 | 9.80 | 22.06 | 16.37 | 62.31 | 293.56 | 0.00 |
6 | 23.07.20 | 9.35 | 25.89 | 18.69 | 56.23 | 310.89 | 0.18 |
7 | 24.07.20 | 17.29 | 24.84 | 20.46 | 58.70 | 202.74 | 0.02 |
8 | 25.07.20 | 14.94 | 25.30 | 21.05 | 64.87 | 109.04 | 0.21 |
9 | 26.07.20 | 16.04 | 23.25 | 19.53 | 72.65 | 220.62 | 4.80 |
10 | 27.07.20 | 12.87 | 30.25 | 21.40 | 58.40 | 175.06 | 0.74 |
11 | 28.07.20 | 16.46 | 23.63 | 20.45 | 57.46 | 222.27 | 0.01 |
12 | 29.07.20 | 13.19 | 23.39 | 18.29 | 59.13 | 267.38 | 0.04 |
13 | 30.07.20 | 10.60 | 28.22 | 20.07 | 55.16 | 298.25 | 0.04 |
14 | 31.07.20 | 15.15 | 35.56 | 25.78 | 42.94 | 309.94 | 0.06 |
15 | 01.08.20 | 21.46 | 30.95 | 25.43 | 55.01 | 205.48 | 0.67 |
16 | 02.08.20 | 16.92 | 23.92 | 20.33 | 63.76 | 191.84 | 0.01 |
17 | 03.08.20 | 10.99 | 23.27 | 17.73 | 61.83 | 202.76 | 0.09 |
18 | 04.08.20 | 12.98 | 23.33 | 17.79 | 60.71 | 279.16 | 0.02 |
19 | 05.08.20 | 12.39 | 30.37 | 21.79 | 44.47 | 300.26 | 0.03 |
20 | 06.08.20 | 17.17 | 31.67 | 24.82 | 39.82 | 290.72 | 0.02 |
21 | 07.08.20 | 16.91 | 33.98 | 26.52 | 41.35 | 293.58 | 0.07 |
22 | 08.08.20 | 17.54 | 35.84 | 28.04 | 42.61 | 282.54 | 0.03 |
23 | 09.08.20 | 21.27 | 33.20 | 25.08 | 58.56 | 114.01 | 4.25 |
24 | 10.08.20 | 19.09 | 33.44 | 26.74 | 58.13 | 242.12 | 0.02 |
25 | 11.08.20 | 21.63 | 34.42 | 26.65 | 57.93 | 179.42 | 1.38 |
26 | 12.08.20 | 19.86 | 31.68 | 23.68 | 75.36 | 182.34 | 17.48 |
27 | 13.08.20 | 20.05 | 31.98 | 24.84 | 71.71 | 196.22 | 8.84 |
28 | 14.08.20 | 18.62 | 25.79 | 21.84 | 74.67 | 96.42 | 0.00 |
Rainfall Intensity | Total Weight Loss (g) | Dust Control Effectiveness (%) | |
---|---|---|---|
M | SD | ||
Chicory vinasses | |||
0.25 L/m2 | 63.04 | 31.29 | 49.68 |
1 L/m2 | 5.35 | 2.72 | 95.73 |
2 L/m2 | 0.60 | 0.09 | 99.52 |
4 L/m2 | 2.12 | 0.40 | 98.31 |
Corn steep liquor | |||
0.25 L/m2 | 4.38 | 1.12 | 96.50 |
1 L/m2 | 1.24 | 0.27 | 99.01 |
2 L/m2 | 0.70 | 0.23 | 99.44 |
4 L/m2 | 2.38 | 0.96 | 98.10 |
Decantation syrup | |||
0.25 L/m2 | 2.79 | 0.79 | 97.78 |
1 L/m2 | 0.21 | 0.08 | 99.84 |
2 L/m2 | 0.27 | 0.05 | 99.78 |
4 L/m2 | 0.49 | 0.22 | 99.61 |
Palatinose Molasses | |||
0.25 L/m2 | 13.52 | 3.27 | 89.21 |
1 L/m2 | 0.81 | 0.20 | 99.35 |
2 L/m2 | 0.25 | 0.06 | 99.80 |
4 L/m2 | 0.50 | 0.11 | 99.60 |
Rainfall Intensity | Soil Loss (g) | |||
---|---|---|---|---|
WDC-1 | WDC-2 | WDC-3 | WDC-4 | |
Chicory vinasses | ||||
0.25 L/m2 | 2.68 | 20.37 | 13.03 | 26.97 |
1 L/m2 | 4.65 | 0.38 | 0.07 | 0.25 |
2 L/m2 | 0.18 | 0.07 | 0.04 | 0.32 |
4 L/m2 | 0.74 | 0.56 | 0.17 | 0.65 |
Corn steep liquor | ||||
0.25 L/m2 | 0.08 | 0.19 | 1.14 | 2.98 |
1 L/m2 | 1.12 | 0.04 | 0.04 | 0.05 |
2 L/m2 | 0.31 | 0.05 | 0.05 | 0.29 |
4 L/m2 | 0.34 | 0.21 | 0.24 | 1.58 |
Decantation syrup | ||||
0.25 L/m2 | 0.58 | 0.80 | 0.19 | 1.21 |
1 L/m2 | 0.11 | 0.01 | 0.07 | 0.02 |
2 L/m2 | 0.08 | 0.07 | 0.05 | 0.07 |
4 L/m2 | 0.22 | 0.12 | 0.11 | 0.03 |
Palatinose molasses | ||||
0.25 L/m2 | 5.18 | 2.52 | 1.34 | 4.48 |
1 L/m2 | 0.61 | 0.02 | 0.01 | 0.17 |
2 L/m2 | 0.11 | 0.05 | 0.04 | 0.05 |
4 L/m2 | 0.27 | 0.11 | 0.07 | 0.06 |
Concentrations of Dust Particles (mg/m3) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PM2.5 | PM10 | TSP | PM2.5 | PM10 | TSP | PM2.5 | PM10 | TSP | PM2.5 | PM10 | TSP | PM2.5 | PM10 | TSP | |
Day 3 | Day 7 | Day 14 | Day 21 | Day 28 | |||||||||||
Chicory vinasses | |||||||||||||||
M | 0.031 | 0.053 | 0.093 | 0.039 | 0.049 | 0.070 | 0.048 | 0.088 | 0.180 | 1.863 | 2.148 | 2.697 | 0.022 | 0.034 | 0.078 |
SD | 0.065 | 0.094 | 0.171 | 0.039 | 0.045 | 0.068 | 0.154 | 0.306 | 0.725 | 3.274 | 3.519 | 3.933 | 0.055 | 0.076 | 0.194 |
Corn steep liquor | |||||||||||||||
M | 0.118 | 0.174 | 0.303 | 0.154 | 0.234 | 0.374 | 0.617 | 0.796 | 1.123 | 2.351 | 3.184 | 5.169 | 0.025 | 0.051 | 0.096 |
SD | 0.340 | 0.438 | 0.697 | 0.749 | 1.042 | 1.586 | 0.943 | 1.135 | 1.522 | 6.043 | 7.872 | 12.140 | 0.048 | 0.109 | 0.232 |
Decantation syrup | |||||||||||||||
M | 0.016 | 0.023 | 0.036 | 0.124 | 0.191 | 0.301 | 0.055 | 0.085 | 0.150 | 0.900 | 1.756 | 2.896 | 0.011 | 0.017 | 0.028 |
SD | 0.024 | 0.040 | 0.083 | 0.223 | 0.632 | 1.364 | 0.152 | 0.232 | 0.495 | 5.047 | 9.799 | 15.472 | 0.008 | 0.015 | 0.041 |
Palatinose molasses | |||||||||||||||
M | 0.017 | 0.023 | 0.032 | 0.050 | 0.067 | 0.104 | 0.088 | 0.144 | 0.247 | 3.152 | 5.003 | 8.483 | 0.014 | 0.018 | 0.030 |
SD | 0.043 | 0.057 | 0.085 | 0.050 | 0.075 | 0.152 | 0.138 | 0.204 | 0.354 | 11.445 | 14.409 | 22.296 | 0.026 | 0.028 | 0.037 |
Pure water | |||||||||||||||
M | 20.981 | 27.649 | 39.176 | 9.197 | 11.297 | 15.114 | 1.441 | 1.623 | 1.905 | 1.335 | 1.756 | 2.849 | 0.027 | 0.039 | 0.064 |
SD | 20.422 | 24.394 | 32.320 | 9.938 | 11.206 | 13.960 | 2.926 | 3.170 | 3.554 | 2.241 | 2.747 | 4.265 | 0.044 | 0.054 | 0.098 |
Untreated soil | |||||||||||||||
M | 32.078 | 59.026 | 77.075 | 10.926 | 19.476 | 28.218 | 0.980 | 1.142 | 1.461 | 0.242 | 0.360 | 0.603 | 0.013 | 0.024 | 0.043 |
SD | 31.216 | 52.371 | 58.956 | 8.332 | 14.301 | 20.837 | 1.224 | 1.326 | 1.561 | 0.433 | 0.717 | 1.256 | 0.020 | 0.033 | 0.063 |
Background load | |||||||||||||||
M | 0.008 | 0.009 | 0.010 | 0.016 | 0.019 | 0.023 | 0.019 | 0.025 | 0.032 | 0.018 | 0.021 | 0.026 | 0.007 | 0.009 | 0.014 |
SD | 0.003 | 0.006 | 0.010 | 0.067 | 0.068 | 0.080 | 0.005 | 0.010 | 0.026 | 0.003 | 0.006 | 0.014 | 0.002 | 0.006 | 0.026 |
References
- Piechota, T.; van Ee, J.; Batista, J.; Stave, K.; James, D. Potential Environmental Impacts of Dust Suppressants: Avoiding Another Times Beach; University of Nevada: Las Vegas, NV, USA, 2004. [Google Scholar]
- Bolander, P.; Yamada, A. Dust Palliative Selection and Application Guide; San Dimas Technology & Development Center: San Dimas, CA, USA, 1999. [Google Scholar]
- Yousif, E.; Haddad, R. Photodegradation and photostabilization of polymers, especially polystyrene: Review. Springerplus 2013, 2, 398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, N.R.; Sekhar, V.C.; Nampoothiri, K.M.; Pandey, A. Biodegradation of biopolymers. In Current Developments in Biotechnology and Bioengineering; Pandey, A., Negi, S., Soccol, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 739–755. ISBN 978-0-444-63662-1. [Google Scholar]
- Edvardsson, K.; Gustafsson, A.; Magnusson, R. Dust suppressants efficiency study: In situ measurements of dust generation on gravel roads. Int. J. Pavement Eng. 2012, 13, 11–31. [Google Scholar] [CrossRef]
- Monlux, S.; Mitchell, M. Chloride stabilization of unpaved road aggregate surfacing. Transp. Res. Rec. 2007, 1989–2, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Gillies, J.A.; Watson, J.G.; Rogers, C.F.; DuBois, D.; Chow, J.C.; Langston, R.; Sweet, J. Long-term efficiencies of dust suppressants to reduce PM10 emissions from unpaved roads. J. Air Waste Manag. 1999, 49, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Katra, I. Comparison of diverse dust control products in wind-induced dust emission from unpaved roads. Appl. Sci. 2019, 9, 5204. [Google Scholar] [CrossRef] [Green Version]
- Chang, I.; Im, J.; Cho, G.-C. Geotechnical engineering behaviours of gellan gum biopolymer treated sand. Can. Geotech. J. 2016, 53, 1658–1670. [Google Scholar] [CrossRef] [Green Version]
- Mudgil, D.; Barak, S.; Khatkar, B.S. Guar gum: Processing, properties and food applications—A Review. J. Food Sci. Technol. 2014, 51, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Hataf, N.; Ghadir, P.; Ranjbar, N. Investigation of soil stabilization using chitosan biopolymer. J. Clean. Prod. 2018, 170, 1493–1500. [Google Scholar] [CrossRef]
- Kunz, B.K.; Little, E.E.; Barandino, V.L. Aquatic toxicity of chemical road dust suppressants to freshwater organisms. Arch. Environ. Contam. Toxicol. 2021, 82, 294–305. [Google Scholar] [CrossRef]
- Mahro, B.; Gaida, B.; Schüttmann, I.; Zorn, H. Survey of the amount and use of biogenic residues of the German food and biotech industry. Chem. Ing. Tech. 2015, 87, 537–542. [Google Scholar] [CrossRef]
- Anal, A.K. Food Processing by-Products and their Utilization, 1st ed.; Wiley: Chichester, UK, 2017; ISBN 9781118432921. [Google Scholar]
- Jõgi, K.; Bhat, R. Valorization of food processing wastes and by-products for bioplastic production. Sustain. Chem. Pharm. 2020, 18, 100326. [Google Scholar] [CrossRef]
- Freer, J.; Bucher, P.G.; Braun, M.; Lottermoser, B.G. Food processing by-products and wastes as potential dust suppressants at mine sites: Results from unconfined compressive strength testing. J. Air Waste Manag. 2022, 72, 1012–1026. [Google Scholar] [CrossRef]
- Freer, J.; Sieger, J.L.; Lottermoser, B.G.; Braun, M. Effectiveness of Food Processing by-Products in Suppressing Wind-Induced Dust Emissions from Mine Soils: Results from Laboratory Wind Tunnel Experiments. 2022. Available online: https://ssrn.com/abstract=4220674 (accessed on 27 September 2022).
- German Institute for Standardization. Geotechnical Investigation and Testing—Identification and Classification of Soil—Part 1: Identification and Description; Beuth: Berlin, Germany, 2018; DIN EN ISO 14688-1:2018-05. [Google Scholar]
- Si, Z.; Herrera, C.H. Laboratory and field evaluation of base stabilization using cement kiln dust. Transp. Res. Rec. 2007, 1989, 42–49. [Google Scholar] [CrossRef]
- Van Pelt, R.S.; Zobeck, T.M. Portable wind tunnels for field testing of soils and natural surfaces. In Wind Tunnel Designs and Their Diverse Engineering Applications; Ahmed, N., Ed.; InTechOpen: London, UK, 2013; ISBN 978-953-51-1047-7. [Google Scholar]
- Neuman, C.M.; Sanderson, S. Humidity control of particle emissions in aeolian systems. J. Geophys. Res. 2008, 113, F02S14. [Google Scholar] [CrossRef] [Green Version]
- Chepil, W.S. Influence of Moisture on Erodibility of Soil by Wind. Soil Sci. Soc. Am. J. 1956, 20, 288–292. [Google Scholar] [CrossRef]
- Yuge, K.; Anan, M. Evaluation of the effect of wind velocity and soil moisture condition on soil erosion in andosol agricultural fields (model experiment). Water 2019, 11, 98. [Google Scholar] [CrossRef] [Green Version]
- Bisal, F.; Hsieh, J. Influence of moisture on erodibility of soil by wind. Soil Sci. 1966, 102, 143–146. [Google Scholar] [CrossRef]
- Chen, W.; Zhibao, D.; Zhenshan, L.; Zuotao, Y. Wind tunnel test of the influence of moisture on the erodibility of loessial sandy loam soils by wind. J. Arid Environ. 1996, 34, 391–402. [Google Scholar] [CrossRef]
- Fécan, F.; Marticorena, B.; Bergametti, G. Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas. Ann. Geophys. 1999, 17, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Toufigh, V.; Ghassemi, P. Control and stabilization of fugitive dust: Using eco-friendly and sustainable materials. Int. J. Geomech. 2020, 20, 4020140. [Google Scholar] [CrossRef]
- Chen, R.; Lee, I.; Zhang, L. Biopolymer stabilization of mine tailings for dust control. J. Geotech. Geoenviron. Eng. 2015, 141, 4014100. [Google Scholar] [CrossRef]
- Kok, J.F.; Parteli, E.J.R.; Michaels, T.I.; Karam, D.B. The physics of wind-blown sand and dust. Rep. Prog. Phys. 2012, 75, 106901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, H.; Shao, Y. A new model for dust emission by saltation bombardment. J. Geophys. Res. 1999, 104, 16827–16842. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Raupach, M.R.; Findlater, P.A. Effect of saltation bombardment on the entrainment of dust by wind. J. Geophys. Res. 1993, 98, 12719–12726. [Google Scholar] [CrossRef] [Green Version]
- BeMiller, J.N. Carbohydrate Chemistry for Food Scientists, 3rd ed.; WP: London, UK, 2019; ISBN 978-0-12-812069-9. [Google Scholar]
- Xu, Z. (Ed.) Solubility of Polysaccharides; InTechOpen: London, UK, 2017; ISBN 978-953-51-3649-1. [Google Scholar]
- Kumitch, H.M.; Stone, A.K.; Nickerson, M.T.; Korber, D.R.; Tanaka, T. Effect of fermentation time on the physicochemical and functional properties of pea protein-enriched flour fermented by Aspergillus oryzae and Aspergillus niger. Cereal Chem. 2020, 97, 416–428. [Google Scholar] [CrossRef]
- Zayas, J.F. Functionality of Proteins in Food; Springer: Berlin/Heidelberg, Germany, 1997; ISBN 978-3-642-59116-7. [Google Scholar]
- Belnap, J.; Gillette, D.A. Vulnerability of desert biological soil crusts to wind erosion: The influences of crust development, soil texture, and disturbance. J. Arid Environ. 1998, 39, 133–142. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Wang, H.L.; Wang, X.Q.; Yang, W.K.; Zhang, D.Y. The microstructure of microbiotic crust and its influence on wind erosion for a sandy soil surface in the Gurbantunggut Desert of Northwestern China. Geoderma 2006, 132, 441–449. [Google Scholar] [CrossRef]
- Zhang, G.; Azorin-Molina, C.; Shi, P.; Lin, D.; Guijarro, J.A.; Kong, F.; Chen, D. Impact of near-surface wind speed variability on wind erosion in the eastern agro-pastoral transitional zone of Northern China, 1982–2016. Agric. For. Meteorol. 2019, 271, 102–115. [Google Scholar] [CrossRef]
- Shao, Y.; Lu, H. A simple expression for wind erosion threshold friction velocity. J. Geophys. Res. 2000, 105, 22437–22443. [Google Scholar] [CrossRef]
- Ravi, S.; D’Odorico, P.; Over, T.M.; Zobeck, T.M. On the effect of air humidity on soil susceptibility to wind erosion: The case of air-dry soils. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Chang, I.; Lee, M.; Tran, A.T.P.; Lee, S.; Kwon, Y.-M.; Im, J.; Cho, G.-C. Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. Transp. Geotech. 2020, 24, 100385. [Google Scholar] [CrossRef]
- Park, J.; Kim, K.; Lee, T.; Kim, M. Tailings storage facilities (TSFs) dust control using biocompatible polymers. Min. Metall. Explor. 2019, 36, 785–795. [Google Scholar] [CrossRef]
- Tian, K.; Bilal, M. Research progress of biodegradable materials in reducing environmental pollution. In Abatement of Environmental Pollutants: Trends and Strategies; Elsevier: Amsterdam, The Netherlands, 2020; pp. 313–330. ISBN 978-0-12-818095-2. [Google Scholar]
- Göpferich, A. Mechanisms of polymer degradation and erosion. Biomaterials 1996, 17, 103–114. [Google Scholar] [CrossRef]
- Briassoulis, D. The effects of tensile stress and the agrochemical Vapam on the ageing of low density polyethylene (LDPE) agricultural films. Part I. Mechanical behaviour. Polym. Degrad. Stab. 2005, 88, 489–503. [Google Scholar] [CrossRef]
- Rushing, J.F.; Tingle, J.S. Evaluation of products and application procedures for mitigating dust in temperate climates. Transp. Res. Rec. 2007, 1989-1, 305–311. [Google Scholar] [CrossRef]
- Thompson, R.J.; Visser, A.T. Selection, performance and economic evaluation of dust palliatives on surface mine haul roads. J. S. Afr. Inst. Min. Metall. 2007, 107, 435–450. [Google Scholar]
- Chang, I.; Prasidhi, A.K.; Im, J.; Shin, H.-D.; Cho, G.-C. Soil treatment using microbial biopolymers for anti-desertification purposes. Geoderma 2015, 253-254, 39–47. [Google Scholar] [CrossRef]
- Pylak, M.; Oszust, K.; Frąc, M. Review report on the role of bioproducts, biopreparations, biostimulants and microbial inoculants in organic production of fruit. Rev. Environ. Sci. Biotechnol. 2019, 18, 597–616. [Google Scholar] [CrossRef] [Green Version]
- Chang, I.; Jeon, M.; Cho, G.-C.; Shankar, S. Application of microbial biopolymers as an alternative construction binder for earth buildings in underdeveloped countries. Int. J. Polym. Sci. 2015, 2015, 326745. [Google Scholar] [CrossRef] [Green Version]
- Chang, I.; Im, J.; Cho, G.-C. Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering. Sustainability 2016, 8, 251. [Google Scholar] [CrossRef] [Green Version]
- Thompson, R.J.; Visser, A.T. Mine haul road fugitive dust emission and exposure characterisation. In Proceedings of the Environmental Health Risk 2003, Catania, Italy, 17–19 September 2003; Brebbia, C.A., Fayzieva, D., Eds.; WIT Press: Southampton, UK, 2003; pp. 103–112. [Google Scholar]
- Chang, I.; Prasidhi, A.K.; Im, J.; Cho, G.-C. Soil strengthening using thermo-gelation biopolymers. Constr. Build. Mater. 2015, 77, 430–438. [Google Scholar] [CrossRef]
- Chang, I.; Im, J.; Chung, M.-K.; Cho, G.-C. Bovine casein as a new soil strengthening binder from diary wastes. Constr. Build. Mater. 2018, 160, 1–9. [Google Scholar] [CrossRef]
- Singh, V.; Piechota, T.; James, D. Hydrologic impacts of disturbed lands treated with dust suppressants. J. Hydrol. Eng. 2003, 8, 278–286. [Google Scholar] [CrossRef]
- Li, P.; Karunanidhi, D.; Subramani, T.; Srinivasamoorthy, K. Sources and consequences of groundwater contamination. Arch. Environ. Contam. Toxicol. 2021, 80, 1–10. [Google Scholar] [CrossRef]
- Jones, D. Guidelines for the Selection, Specification and Application of Chemical Dust Control and Stabilization Treatments on Unpaved Roads; University of California Pavement Research Center: Davis, CA, USA, 2017. [Google Scholar]
- Kavouras, I.G.; Etyemezian, V.; Nikolich, G.; Gillies, J.; Sweeney, M.; Young, M.; Shafer, D. A new technique for characterizing the efficacy of fugitive dust suppressants. J. Air Waste Manag. 2012, 59, 603–612. [Google Scholar] [CrossRef]
- McKenna Neuman, C.; Boulton, J.W.; Sanderson, S. Wind tunnel simulation of environmental controls on fugitive dust emissions from mine tailings. Atmos. Environ. 2009, 43, 520–529. [Google Scholar] [CrossRef]
- Etyemezian, V.; Nikolich, G.; Ahonen, S.; Pitchford, M.; Sweeney, M.; Purcell, R.; Gillies, J.; Kuhns, H. The portable in situ wind erosion laboratory (PI-SWERL): A new method to measure PM10 windblown dust properties and potential for emissions. Atmos. Environ. 2007, 41, 3789–3796. [Google Scholar] [CrossRef]
Biomaterial | Concentration (%) | Application Rate (L/m2) |
---|---|---|
Chicory vinasses | 10.0 | 1.5 |
Corn steep liquor | 5.0 | 0.75 |
Decantation syrup | 6.0 | 1.0 |
Palatinose molasses | 6.0 | 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freer, J.; Lübeck, M.; Sieger, J.L.; Lottermoser, B.G.; Braun, M. Effectiveness of Food Processing By-Products as Dust Suppressants for Exposed Mine Soils: Results from Laboratory Experiments and Field Trials. Appl. Sci. 2022, 12, 11551. https://doi.org/10.3390/app122211551
Freer J, Lübeck M, Sieger JL, Lottermoser BG, Braun M. Effectiveness of Food Processing By-Products as Dust Suppressants for Exposed Mine Soils: Results from Laboratory Experiments and Field Trials. Applied Sciences. 2022; 12(22):11551. https://doi.org/10.3390/app122211551
Chicago/Turabian StyleFreer, Justus, Maximilian Lübeck, Johannes L. Sieger, Bernd G. Lottermoser, and Marius Braun. 2022. "Effectiveness of Food Processing By-Products as Dust Suppressants for Exposed Mine Soils: Results from Laboratory Experiments and Field Trials" Applied Sciences 12, no. 22: 11551. https://doi.org/10.3390/app122211551
APA StyleFreer, J., Lübeck, M., Sieger, J. L., Lottermoser, B. G., & Braun, M. (2022). Effectiveness of Food Processing By-Products as Dust Suppressants for Exposed Mine Soils: Results from Laboratory Experiments and Field Trials. Applied Sciences, 12(22), 11551. https://doi.org/10.3390/app122211551