A Fast Calibration Method for Sensors of Atmospheric Detection System
Abstract
:1. Introduction
- We built a Tube–Air–ADS system and thermostat physical field model, which first obtains the dynamic transfer function of atmospheric sounding system temperature sensor calibration;
- We propose an MCA PID controller design method, which shortens the calibration time to 47.7% compared with the existing method, and at the same time, ensures the safe operation of the thermostat under extreme conditions;
- We present a VPSSD method in temperature calibration, which reduces the calibration time of the MCA PID controller design method by 38.7 s.
2. System Physics Modeling
2.1. Calibration System Overview
2.2. Dynamic Heat Transfer Model of System
2.2.1. Dynamic Heat Transfer Model of Ethanol Bath Thermostat
2.2.2. Dynamic Heat Transfer Model of Tube–Air–ADS
3. System Control Method
3.1. MAC PID Controller Design Method
3.2. VPSSD Method
Algorithm 1 MAC PID Controller Design Method |
Algorithm 2 VPSSD Method |
4. Evaluation
4.1. Dynamic Model Parameter Setting
4.2. Controller Parameter Setting and Evaluation
4.2.1. Evaluation of Adjustment Time and Overshoot Criterion
4.2.2. Evaluation of Temperature Setting Limit and Switching Time Limit Criterion
4.3. VPSSD Method and Temperature Calibration Time Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADS | Atmospheric Detection System |
MCA | Multi-criteria Adaptive |
VPSSD | Variable Precision Steady-state Discrimination |
S-K | Sanathanan–Koerner |
WMO | World Meteorological Organization |
PID | Proportional–Integral–Differential |
Z-N | Ziegler–Nichols |
TFB | Transfer Function Based |
NTC | Negative Temperature Coefficient |
References
- Fu, W.; Ma, J.; Chen, P.; Chen, F. Remote sensing satellites for digital earth. In Manual of Digital Earth; Springer: Singapore, 2020; pp. 55–123. [Google Scholar]
- Peterson, T.; Folland, C.; Gruza, G.; Hogg, W.; Mokssit, A.; Plummer, N. Report on the Activities of the Working Group on Climate Change Detection and Related Rapporteurs; Citeseer: Princeton, NJ, USA, 2001. [Google Scholar]
- Chen, X.; Ruiz, C.; Zeng, S.; Gao, L.; Purohit, A.; Carpin, S.; Zhang, P. H-DrunkWalk: Collaborative and adaptive navigation for heterogeneous MAV swarm. ACM Trans. Sens. Netw. (TOSN) 2020, 16, 1–27. [Google Scholar] [CrossRef]
- Chen, X.; Xu, S.; Liu, X.; Xu, X.; Noh, H.Y.; Zhang, L.; Zhang, P. Adaptive hybrid model-enabled sensing system (HMSS) for mobile fine-grained air pollution estimation. IEEE Trans. Mob. Comput. 2020, 21, 1927–1944. [Google Scholar] [CrossRef]
- Biardeau, L.T.; Davis, L.W.; Gertler, P.; Wolfram, C. Heat exposure and global air conditioning. Nat. Sustain. 2020, 3, 25–28. [Google Scholar] [CrossRef]
- Xu, S.; Chen, X.; Pi, X.; Joe-Wong, C.; Zhang, P.; Noh, H.Y. ilocus: Incentivizing vehicle mobility to optimize sensing distribution in crowd sensing. IEEE Trans. Mob. Comput. 2019, 19, 1831–1847. [Google Scholar] [CrossRef]
- Lewis, A.; Peltier, W.R.; von Schneidemesser, E. Low-Cost Sensors for the Measurement of Atmospheric Composition: Overview of Topic and Future Applications. 2018. Available online: https://eprints.whiterose.ac.uk/135994/1/WMO_Low_cost_sensors_post_review_final.pdf (accessed on 23 July 2022).
- Yu, C.; Luo, J.; Shi, R.; Liu, X.; Dang, F.; Chen, X. ST-ICM: Spatial-Temporal Inference Calibration Model for Low Cost Fine-grained Mobile Sensing. In Proceedings of the ACM MobiCom’22, Sydney, Australia, 17–21 October 2022. [Google Scholar]
- Liu, L.; Han, Y.; Xia, Y.; Guo, Q.; Gao, W.; Guo, J. Investigation of Atmospheric Dynamic and Thermodynamic Structures of Typhoon Sinlaku (2020) from High-Resolution Dropsonde and Two-Way Rawinsonde Measurements. Remote Sens. 2022, 14, 2704. [Google Scholar] [CrossRef]
- Bluestein, H.B.; Carr, F.H.; Goodman, S.J. Atmospheric observations of weather and climate. Atmosphere-Ocean 2022, 60, 149–187. [Google Scholar] [CrossRef]
- Gayfulin, D.; Tsyrulnikov, M.; Uspensky, A. Assessment and adaptive correction of observations in atmospheric sounding channels of the satellite microwave radiometer MTVZA-GY. Pure Appl. Geophys. 2018, 175, 3653–3670. [Google Scholar] [CrossRef]
- Iacovazzi, R.; Lin, L.; Sun, N.; Liu, Q. NOAA operational microwave sounding radiometer data quality monitoring and anomaly assessment using COSMIC GNSS radio-occultation soundings. Remote Sens. 2020, 12, 828. [Google Scholar] [CrossRef] [Green Version]
- Iturbide-Sanchez, F.; da Silva, S.R.S.; Liu, Q.; Pryor, K.L.; Pettey, M.E.; Nalli, N.R. Toward the operational weather forecasting application of atmospheric stability products derived from NUCAPS CrIS/ATMS soundings. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4522–4545. [Google Scholar] [CrossRef]
- Chen, X.; Purohit, A.; Dominguez, C.R.; Carpin, S.; Zhang, P. Drunkwalk: Collaborative and adaptive planning for navigation of micro-aerial sensor swarms. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems, Seoul, Republic of Korea, 1–4 November 2015; pp. 295–308. [Google Scholar]
- Wang, C.C.; Hou, Z.Y.; You, J.C. A high-precision CMOS temperature sensor with thermistor linear calibration in the (−5 ∘C, 120 ∘C) temperature range. Sensors 2018, 18, 2165. [Google Scholar] [CrossRef]
- Yao, Y.; Sun, Z.; Xu, C. Applicability of Bevis formula at different height levels and global weighted mean temperature model based on near-earth atmospheric temperature. J. Geod. Geoinf. Sci. 2020, 3, 1. [Google Scholar]
- Žužek, V.; Pušnik, I. Calibration of Air Thermometers in a Climatic Chamber and Liquid Baths. Int. J. Thermophys. 2017, 38, 1–7. [Google Scholar] [CrossRef]
- Liu, X.; Xu, X.; Chen, X.; Mai, E.; Noh, H.Y.; Zhang, P.; Zhang, L. Individualized calibration of industrial-grade gas sensors in air quality sensing system. In Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems, Delft, The Netherlands, 6–8 November 2017; pp. 1–2. [Google Scholar]
- Nagahage, E.A.A.D.; Nagahage, I.S.P.; Fujino, T. Calibration and validation of a low-cost capacitive moisture sensor to integrate the automated soil moisture monitoring system. Agriculture 2019, 9, 141. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Yoon, S.; Wang, J.; Yu, Y. Automated reviving calibration strategy for virtual in-situ sensor calibration in building energy systems: Sensitivity coefficient optimization. Energy Build. 2019, 198, 291–304. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, N.; Liu, P.; He, J.; Zhou, Y.; Zhu, P. Automatic and rapid calibration method for temperature coefficient of fiber grating temperature sensor. J. Phys. Conf. Ser. 2021, 1820, 012141. [Google Scholar] [CrossRef]
- Rodriguez-Lujan, I.; Fonollosa, J.; Vergara, A.; Homer, M.; Huerta, R. On the calibration of sensor arrays for pattern recognition using the minimal number of experiments. Chemom. Intell. Lab. Syst. 2014, 130, 123–134. [Google Scholar] [CrossRef]
- Chen, X.; Wang, H.; Li, Z.; Ding, W.; Dang, F.; Wu, C.; Chen, X. DeliverSense: Efficient Delivery Drone Scheduling for Crowdsensing with Deep Reinforcement Learning. In Proceedings of the UbiComp/ISWC’22, Cambridge, UK, 11–15 September 2022. [Google Scholar]
- Chen, X.; Xu, S.; Han, J.; Fu, H.; Pi, X.; Joe-Wong, C.; Li, Y.; Zhang, L.; Noh, H.Y.; Zhang, P. Pas: Prediction-based actuation system for city-scale ridesharing vehicular mobile crowdsensing. IEEE Internet Things J. 2020, 7, 3719–3734. [Google Scholar] [CrossRef]
- Chen, X.; Purohit, A.; Pan, S.; Ruiz, C.; Han, J.; Sun, Z.; Mokaya, F.; Tague, P.; Zhang, P. Design experiences in minimalistic flying sensor node platform through sensorfly. ACM Trans. Sens. Netw. (TOSN) 2017, 13, 1–37. [Google Scholar] [CrossRef]
- Yang, F.; Geng, Z.; Koneru, A.; Zhi, M.; Li, H.; Wu, N. Dynamic calibration of electrochemical sensor for accelerated analyte quantification. IEEE Sens. J. 2012, 13, 1192–1199. [Google Scholar] [CrossRef]
- Concas, F.; Mineraud, J.; Lagerspetz, E.; Varjonen, S.; Liu, X.; Puolamäki, K.; Nurmi, P.; Tarkoma, S. Low-cost outdoor air quality monitoring and sensor calibration: A survey and critical analysis. ACM Trans. Sens. Netw. (TOSN) 2021, 17, 1–44. [Google Scholar] [CrossRef]
- Barcelo-Ordinas, J.M.; Doudou, M.; Garcia-Vidal, J.; Badache, N. Self-calibration methods for uncontrolled environments in sensor networks: A reference survey. Ad Hoc Netw. 2019, 88, 142–159. [Google Scholar] [CrossRef]
- Moguel-Castañeda, J.G.; Hernandez-Ayala, J.L.; Gomez-Rodriguez, R.; Bastidas-Oyanedel, J.R.; Hernandez-Martinez, E. Multiscale Analysis to Determine the Sensitive Zones for Temperature Sensor Location in Tubular Reactors. Chem. Eng. Technol. 2021, 44, 1259–1269. [Google Scholar] [CrossRef]
- Yang, G.; Wen, Y. A Controllable DCCS-Based PT temperature sensor in high precision molecular spectroscopy application. IEEE Access 2020, 8, 42519–42528. [Google Scholar] [CrossRef]
- Szolga, L.A.; Mudure, F. Temperature Sensor Using a Hybrid Structure with Plastic Optical Fiber and Bimetal Element. In Proceedings of the 2021 13th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Pitesti, Romania, 1–3 July 2021; pp. 1–5. [Google Scholar]
- Soliman, M.S.; Belkhier, Y.; Ullah, N.; Achour, A.; Alharbi, Y.M.; Al Alahmadi, A.A.; Abeida, H.; Khraisat, Y.S.H. Supervisory energy management of a hybrid battery/PV/tidal/wind sources integrated in DC-microgrid energy storage system. Energy Rep. 2021, 7, 7728–7740. [Google Scholar] [CrossRef]
- Ullah, N.; Sami, I.; Jamal Babqi, A.; Alkhammash, H.I.; Belkhier, Y.; Althobaiti, A.; Ibeas, A. Processor in the loop verification of fault tolerant control for a three phase inverter in grid connected PV system. Energy Sources, Part Recover. Util. Environ. Eff. 2021, 0, 1–17. [Google Scholar] [CrossRef]
- Belkhier, Y.; Achour, A.; Bures, M.; Ullah, N.; Bajaj, M.; Zawbaa, H.M.; Kamel, S. Interconnection and damping assignment passivity-based non-linear observer control for efficiency maximization of permanent magnet synchronous motor. Energy Rep. 2022, 8, 1350–1361. [Google Scholar] [CrossRef]
- Tang, W.; Wang, L.; Gu, J.; Gu, Y. Single neural adaptive PID control for small UAV micro-turbojet engine. Sensors 2020, 20, 345. [Google Scholar] [CrossRef] [Green Version]
- Al Tahtawi, A.R.; Yusuf, M. Low-cost quadrotor hardware design with PID control system as flight controller. TELKOMNIKA (Telecommun. Comput. Electron. Control) 2019, 17, 1923–1930. [Google Scholar] [CrossRef]
- Joseph, S.B.; Dada, E.G.; Abidemi, A.; Oyewola, D.O.; Khammas, B.M. Metaheuristic algorithms for PID controller parameters tuning: Review, approaches and open problems. Heliyon 2022, 8, e09399. [Google Scholar] [CrossRef]
- Patel, V.V. Ziegler-Nichols tuning method. Resonance 2020, 25, 1385–1397. [Google Scholar] [CrossRef]
- Zhuo-Yun, N.; Yi-Min, Z.; Qing-Guo, W.; Rui-Juan, L.; Lei-Jun, X. Fractional-order PID controller design for time-delay systems based on modified Bode’s ideal transfer function. IEEE Access 2020, 8, 103500–103510. [Google Scholar] [CrossRef]
- Zeng, W.; Jiang, Q.; Liu, Y.; Yan, S.; Zhang, G.; Yu, T.; Xie, J. Core power control of a space nuclear reactor based on a nonlinear model and fuzzy-PID controller. Prog. Nucl. Energy 2021, 132, 103564. [Google Scholar] [CrossRef]
- Nagrath, I. Control Systems Engineering; New Age International: New York, NY, USA, 2006. [Google Scholar]
- Constantin, P.; Foias, C. Navier-Stokes Equations; University of Chicago Press: Chicago, IL, USA, 2020. [Google Scholar]
- Bird, R.B. Transport phenomena. Appl. Mech. Rev. 2002, 55, R1–R4. [Google Scholar] [CrossRef]
- Drmac, Z.; Gugercin, S.; Beattie, C. Quadrature-based vector fitting for discretized h_2 approximation. SIAM J. Sci. Comput. 2015, 37, A625–A652. [Google Scholar] [CrossRef] [Green Version]
- Borase, R.P.; Maghade, D.; Sondkar, S.; Pawar, S. A review of PID control, tuning methods and applications. Int. J. Dyn. Control 2021, 9, 818–827. [Google Scholar] [CrossRef]
- Euzébio, T.A.; Da Silva, M.T.; Yamashita, A.S. Decentralized PID controller tuning based on nonlinear optimization to minimize the disturbance effects in coupled loops. IEEE Access 2021, 9, 156857–156867. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, A.; Li, D.; Zheng, D.; Li, Z.; Na, R. A Fast Calibration Method for Sensors of Atmospheric Detection System. Appl. Sci. 2022, 12, 11733. https://doi.org/10.3390/app122211733
Chen A, Li D, Zheng D, Li Z, Na R. A Fast Calibration Method for Sensors of Atmospheric Detection System. Applied Sciences. 2022; 12(22):11733. https://doi.org/10.3390/app122211733
Chicago/Turabian StyleChen, Aobei, Dapeng Li, Dezhi Zheng, Zhongxiang Li, and Rui Na. 2022. "A Fast Calibration Method for Sensors of Atmospheric Detection System" Applied Sciences 12, no. 22: 11733. https://doi.org/10.3390/app122211733
APA StyleChen, A., Li, D., Zheng, D., Li, Z., & Na, R. (2022). A Fast Calibration Method for Sensors of Atmospheric Detection System. Applied Sciences, 12(22), 11733. https://doi.org/10.3390/app122211733