Sentiment Analysis of Twitter Data
Abstract
:1. Introduction
- RQ1: What is the major difference between sentiment analysis and opinion mining?
- RQ2: Why was Twitter selected as the primary target platform for the study of SA?
- RQ3: What are the challenges that TSA is facing?
2. Twitter
3. Sentiment Analysis
4. Representation of Feature
5. Different Levels of Analysis
5.1. Document-Level Sentiment Analysis
5.2. Sentiment-Level Sentiment Analysis
5.3. Aspect-Level Sentiment Analysis
6. The Approaches for Twitter Sentiment Analysis
6.1. Machine Learning-Based Approach
6.1.1. Probabilistic Classifier
6.1.2. Linear Classifier
6.1.3. Rule-Based Classifier
6.1.4. Decision Tree Classifier
6.2. Lexicon-Based Approach
6.3. Hybrid Approach
6.4. Other Approaches
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zimbra, D.; Abbasi, A.; Zeng, D.; Chen, H. The State-of-the-Art in Twitter Sentiment Analysis: A Review and Benchmark Evaluation. ACM Trans. Manag. Inf. Syst. 2018, 9, 5. [Google Scholar] [CrossRef]
- Rui, H.; Liu, Y.; Whinston, A. Whose and What Chatter Matters? The Effect of Tweets on Movie Sales. Decis. Support Syst. 2013, 55, 863–870. [Google Scholar] [CrossRef] [Green Version]
- Bollen, J.; Mao, H.; Zeng, X. Twitter Mood Predicts the Stock Market. J. Comput. Sci. 2011, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Can, D.; Kazemzadeh, A.; Bar, F.; Narayanan, S. A System for Real-time Twitter Sentiment Analysis of 2012 U.S. Presidential Election Cycle. In Proceedings of the ACL 2012 System Demonstrations, Jeju Island, Korea, 10 July 2012. [Google Scholar]
- Statista. Available online: https://www.statista.com (accessed on 15 November 2022).
- Reyna, N.S.; Pruett, C.; Morrison, M.; Fowler, J.; Pandey, S.; Hensley, L. Twitter: More than tweets for undergraduate student researchers. J. Microbiol. Biol. Educ. 2022, 23, e00326-21. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Xiao, X.; Wang, J. Rating the crisis of online public opinion using a multi-level index system. Int. Arab. J. Inf. Techn. 2022, 19, 597–608. [Google Scholar] [CrossRef]
- Khan, I.U.; Khan, A.; Khan, W.; Su’ud, M.M.; Alam, M.M.; Subhan, F.; Asghar, M.Z. A review of Urdu sentiment analysis with multilingual perspective: A case of Urdu and roman Urdu language. Computers 2022, 11, 3. [Google Scholar] [CrossRef]
- Pang, B.; Lee, L. Opinion mining and sentiment analysis. Found. Trends® Inf. Retr. 2008, 2, 1–135. [Google Scholar] [CrossRef] [Green Version]
- Bing, L.; Lei, Z. A survey of opinion mining and sentiment analysis. In Mining Text Data, 1st ed.; Charu, C.A., ChengXiang, Z., Eds.; Springer: New York, NY, USA, 2012; pp. 415–463. [Google Scholar]
- Adwan, O.; Al-Tawil, M.; Huneiti, A.; Shahin, R.; Zayed, A.A.; Al-Dibsi, R. Twitter sentiment analysis approaches: A survey. Int. J. Emerg. Technol. 2020, 15, 79–93. [Google Scholar] [CrossRef]
- Kulkarni, S.; Nadaph, A.; Narang, G. Survey on Twitter Sentiment Analysis using Supervised Machine Learning Algorithms. Int. J. Res. Trends Innov. 2022, 7, 2456–3315. [Google Scholar]
- Tsytsarau, M.; Palpanas, T. Survey on mining subjective data on the web. Data Min. Knowl. Discov. 2012, 24, 478–514. [Google Scholar] [CrossRef]
- Giachanou, A.; Crestani, F. Like it or not: A survey of Twitter sentiment analysis methods. ACM Comput. Surv. (CSUR) 2016, 49, 28. [Google Scholar] [CrossRef]
- Pak, A.; Paroubek, P. Twitter as a corpus for sentiment analysis and opinion mining. In Proceedings of the Seventh International Conference on Language Resources and Evaluation, Valletta, Malta, 17–23 May 2010. [Google Scholar]
- Swathi, T.; Kasiviswanath, N.; Rao, A.A. An optimal deep learning-based LSTM for stock price prediction using twitter sentiment analysis. Appl. Intell. 2022, 52, 13675–13688. [Google Scholar] [CrossRef]
- Bose, D.; Aithal, P.S.; Roy, S. Survey of Twitter Viewpoint on Application of Drugs by VADER Sentiment Analysis among Distinct Countries. Int. J. Manag. Technol. Soc. Sci. 2021, 6, 110–127. [Google Scholar] [CrossRef]
- Djenouri, Y.; Belhadi, A.; Srivastava, G.; Lin, J.C.W. Toward a Cognitive-Inspired Hashtag Recommendation for Twitter Data Analysis. IEEE Trans. Comput. Soc. Syst. 2022, 1–10. [Google Scholar] [CrossRef]
- A Step-By-Step Guide to Getting Started on Twitter. Available online: http://img.constantcontact.com/docs/pdf/getting-started-on-twitter.pdf (accessed on 16 March 2021).
- Jose, A.K.; Bhatia, N.; Krishna, S. Twitter Sentiment Analysis; Seminar Report; National Institute of Technology Calicut: Kozhikode, India, 2010. [Google Scholar]
- Kouloumpis, E.; Wilson, T.; Moore, J. Twitter sentiment analysis: The good the bad and the omg! In Proceedings of the International AAAI Conference on Web and Social Media, Barcelona, Spain, 17 July 2011. [Google Scholar]
- Das, S.; Chen, M. Yahoo! for Amazon: Extracting market sentiment from stock message boards. In Proceedings of the Asia Pacific Finance Association Annual Conference, Bangkok, Thailand, 22–25 July 2001. [Google Scholar]
- Tong, R.M. An operational system for detecting and tracking opinions in on-line discussion. In Proceedings of the Workshop on Operational Text Classification, Bangkok, Thailand, 22–25 July 2001. [Google Scholar]
- Turney, P.D. Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In Proceedings of the Association for Computational Linguistics, Philadelphia, PA, USA, 6 July 2002. [Google Scholar]
- Pang, B.; Lee, L.; Vaithyanathan, S. Thumbs up? Sentiment classification using machine learning techniques. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, Philadelphia, PA, USA, 6 July 2002. [Google Scholar]
- Nasukawa, T.; Yi, J. Sentiment analysis, Capturing favorability using natural language processing. In Proceedings of the Conference on Knowledge Capture, Sanibel Island, FL, USA, 23 October 2003. [Google Scholar]
- Liu, Y.; Huang, X.; An, A.; Yu, X. ARSA: A sentiment-aware model for predicting sales performance using blogs. In Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval, Amsterdam, The Netherlands, 23 July 2007. [Google Scholar]
- McGlohon, M.; Glance, N.; Reiter, Z. Star quality: Aggregating reviews to rank products and merchants. In Proceedings of the International Conference on Weblogs and Social Media, Washington, DC, USA, 23–26 May 2010. [Google Scholar]
- Chen, B.; Zhu, L.; Kifer, D.; Lee, D. What is an opinion about? Exploring political standpoints using opinion scoring model. In Proceedings of the AAAI Conference on Artificial Intelligence, Atlanta, GA, USA, 11 July 2010. [Google Scholar]
- Yano, T.; Smith, N.A. What’s Worthy of Comment? Content and Comment Volume in Political Blogs. In Proceedings of the International AAAI Conference on Weblogs and Social Media, Washington, DC, USA, 23–26 May 2010. [Google Scholar]
- Blanco, G.; Lourenço, A. Optimism and pessimism analysis using deep learning on COVID-19 related twitter conversations. Inf. Process. Manag. 2022, 59, 102918. [Google Scholar] [CrossRef]
- Ginossar, T.; Cruickshank, I.J.; Zheleva, E.; Sulskis, J.; Berger-Wolf, T. Cross-platform spread: Vaccine-related content, sources, and conspiracy theories in YouTube videos shared in early Twitter COVID-19 conversations. Hum. Vaccines Immunother. 2022, 18, 1–13. [Google Scholar] [CrossRef]
- Lamsal, R.; Harwood, A.; Read, M.R. Twitter conversations predict the daily confirmed COVID-19 cases. Appl. Soft Comput. 2022, 129, 109603. [Google Scholar] [CrossRef]
- Liu, B. Sentiment Analysis and Opinion Mining; Synthesis lectures on human language technologies; Morgan & Claypool Publishers: San Rafael, CA, USA, 2012. [Google Scholar]
- Feldman, R. Techniques and applications for sentiment analysis. Commun. ACM 2013, 56, 82–89. [Google Scholar] [CrossRef]
- Zhu, E.; Zhang, J.; Yan, J.; Chen, K.; Gao, C. N-gram MalGAN: Evading machine learning detection via feature n-gram. Digit. Commun. Netw. 2022, 8, 485–491. [Google Scholar] [CrossRef]
- Santorini, B. Part-of-Speech Tagging Guidelines for the Penn Treebank Project (3rd Revision); Technical Reports (CIS); University of Pennsylvania: Philadelphia, PA, USA, 1991. [Google Scholar]
- Farooq, U.; Mansoor, H.; Nongaillard, A.; Ouzrout, Y.; Qadir, M.A. Negation Handling in Sentiment Analysis at Sentence Level. J. Comput. 2016, 12, 470–478. [Google Scholar] [CrossRef]
- Behdenna, S.; Barigou, F.; Belalem, G. Sentiment analysis at document level. In Proceedings of the International Conference on Smart Trends for Information Technology and Computer Communications, Jaipur, India, 6 August 2016. [Google Scholar]
- Schouten, K.; Frasincar, F. Survey on aspect-level sentiment analysis. IEEE Trans. Knowl. Data Eng. 2015, 28, 813–830. [Google Scholar] [CrossRef]
- Medhat, W.; Hassan, A.; Korashy, H. Sentiment analysis algorithms and applications: A survey. Ain Shams Eng. J. 2014, 5, 1093–1113. [Google Scholar] [CrossRef] [Green Version]
- Delgado, R. A semi-hard voting combiner scheme to ensemble multi-class probabilistic classifiers. Appl. Intell. 2022, 52, 3653–3677. [Google Scholar] [CrossRef]
- Zheng, W.; Yin, L. Characterization inference based on joint-optimization of multi-layer semantics and deep fusion matching network. PEERJ Comput. Sci. 2022, 8, e908. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Tian, X.; Yang, B.; Liu, S.; Ding, Y.; Tian, J.; Yin, L. A few shot classification methods based on multiscale relational networks. Appl. Sci. 2022, 12, 4059. [Google Scholar] [CrossRef]
- Hosseini, S.; Ivanov, D. A multi-layer Bayesian network method for supply chain disruption modelling in the wake of the COVID-19 pandemic. Int. J. Prod. Res. 2022, 60, 5258–5276. [Google Scholar] [CrossRef]
- Gupta, D.K.; Reddy, K.S.; Ekbal, A. Pso-asent: Feature selection using particle swarm optimization for aspect based sentiment analysis. In Proceedings of the International Conference on Applications of Natural Language to Information Systems, Passau, Germany, 17 June 2015. [Google Scholar]
- Unler, A.; Murat, A. A discrete particle swarm optimization method for feature selection in binary classification problems. Eur. J. Oper. Res. 2010, 206, 528–539. [Google Scholar] [CrossRef]
- Shang, L.; Zhou, Z.; Liu, X. Particle swarm optimization-based feature selection in sentiment classification. Soft Comput. 2016, 20, 3821–3834. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, S.; Liu, L.; Sun, J.; Peng, X.; Wang, T. Sentiment recognition of online course reviews using multi-swarm optimization-based selected features. Neurocomputing 2016, 185, 11–20. [Google Scholar] [CrossRef]
- Onan, A.; Korukoğlu, S.; Bulut, H. A multiobjective weighted voting ensemble classifier based on differential evolution algorithm for text sentiment classification. Expert Syst. Appl. 2016, 62, 1–16. [Google Scholar] [CrossRef]
- Basari, A.S.H.; Hussin, B.; Ananta, I.G.P.; Zeniarja, J. Opinion mining of movie review using hybrid method of support vector machine and particle swarm optimization. Procedia Eng. 2013, 53, 453–462. [Google Scholar] [CrossRef]
- Kummer, O.; Savoy, J. Feature Weighting Strategies in Sentiment Analysis. In Proceedings of the First International Workshop on Sentiment Discovery from Affective Data, Bristol, UK, 24–28 September 2012. [Google Scholar]
- O’Keefe, T.; Koprinska, I. Feature selection and weighting methods in sentiment analysis. In Proceedings of the 14th Australasian Document Computing Symposium, Sydney, NSW, Australia, 4 December 2009. [Google Scholar]
- Chen, K.; Zhang, Z.; Long, J.; Zhang, H. Turning from TF-IDF to TF-IGM for term weighting in text classification. Expert Syst. Appl. 2016, 66, 245–260. [Google Scholar] [CrossRef]
- Hu, L.; Gao, W.; Zhao, K.; Zhang, P.; Wang, F. Feature selection considering two types of feature relevancy and feature interdependency. Expert Syst. Appl. 2018, 93, 423–434. [Google Scholar] [CrossRef]
- Dhillon, I.S.; Mallela, S.; Kumar, R. A divisive information-theoretic feature clustering algorithm for text classification. J. Mach. Learn Res. 2013, 3, 1265–1287. [Google Scholar]
- Jiang, L.; Wang, D.; Cai, Z. Discriminatively weighted naive Bayes and its application in text classification. Int. J. Artif. Intell. Tools 2012, 21, 1250007. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, L.; Li, C.; Kong, G. Two feature weighting approaches for naive Bayes text classifiers. Knowl.-Based Syst. 2016, 100, 137–144. [Google Scholar] [CrossRef]
- Kim, S.B.; Han, K.S.; Rim, H.C.; Myaeng, S.H. Some effective techniques for naive bayes text classification. IEEE Trans. Knowl. Data Eng. 2006, 18, 1457–1466. [Google Scholar]
- Jankowski, N.; Usowicz, K. Analysis of feature weighting methods based on feature ranking methods for classification. In Proceedings of the International Conference on Neural Information Processing, Shanghai, China, 13–17 November 2011. [Google Scholar]
- Debnath, S.; Ganguly, N.; Mitra, P. Feature weighting in content based recommendation system using social network analysis. In Proceedings of the 17th International Conference on World Wide Web, Beijing, China, 21 April 2008. [Google Scholar]
- Sun, Y. Iterative RELIEF for feature weighting: Algorithms, theories, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 1035–1051. [Google Scholar] [CrossRef]
- Jiang, L.; Li, C.; Wang, S.; Zhang, L. Deep feature weighting for naive Bayes and its application to text classification. Eng. Appl. Artif. Intell. 2016, 52, 26–39. [Google Scholar] [CrossRef]
- Liu, Y.; Loh, H.T.; Sun, A. Imbalanced text classification: A term weighting approach. Expert Syst. Appl. 2009, 36, 690–701. [Google Scholar] [CrossRef]
- Deng, Z.H.; Luo, K.H.; Yu, H.L. A study of supervised term weighting scheme for sentiment analysis. Expert Syst. Appl. 2014, 41, 3506–3513. [Google Scholar] [CrossRef]
- Deng, Z.H.; Tang, S.W.; Yang, D.Q.; Li, M.Z.; Xie, K.Q. A comparative study on feature weight in text categorization. In Proceedings of the Asia-Pacific Web Conference, Hangzhou, China, 14–17 April 2004. [Google Scholar]
- Bibi, M.; Abbasi, W.A.; Aziz, W.; Khalil, S.; Uddin, M.; Iwendi, C.; Gadekallu, T.R. A novel unsupervised ensemble framework using concept-based linguistic methods and machine learning for twitter sentiment analysis. Pattern Recognit. Lett. 2022, 158, 80–86. [Google Scholar] [CrossRef]
- Rodrigues, A.P.; Fernandes, R.; Shetty, A.; Lakshmanna, K.; Shafi, R.M. Real-time twitter spam detection and sentiment analysis using machine learning and deep learning techniques. Comput. Intell. Neurosci. 2022, 2022, 5211949. [Google Scholar] [CrossRef] [PubMed]
- Verma, B.; Thakur, R.S. Sentiment Analysis Using Lexicon and Machine Learning-Based Approaches: A Survey. In Proceedings of the International Conference on Recent Advancement on Computer and Communication, Singapore, 12–13 October 2018. [Google Scholar]
- Neviarouskaya, A.; Prendinger, H.; Ishizuka, M. Recognition of affect, judgment, and appreciation in text. In Proceedings of the 23rd International Conference on Computational Linguistics, Beijing, China, 23–27 August 2010. [Google Scholar]
- Heerschop, B.; Goossen, F.; Hogenboom, A.; Frasincar, F.; Kaymak, U.; de Jong, F. Polarity analysis of texts using discourse structure. In Proceedings of the 20th ACM International Conference on Information and Knowledge Management, Glasgow, UK, 24–28 October 2011. [Google Scholar]
- Moreo, A.; Romero, M.; Castro, J.L.; Zurita, J.M. Lexicon-based comments-oriented news sentiment analyzer system. Expert Syst. Appl. 2012, 39, 9166–9180. [Google Scholar] [CrossRef]
- Balahur, A.; Hermida, J.M.; Montoyo, A. Detecting implicit expressions of emotion in text: A comparative analysis. Decis. Support Syst. 2012, 53, 742–753. [Google Scholar] [CrossRef]
- Mohammad, S.M. From once upon a time to happily ever after: Tracking emotions in mail and books. Decis. Support Syst. 2012, 53, 730–741. [Google Scholar] [CrossRef]
- Ortega, R.; Fonseca, A.; Montoyo, A. SSA-UO: Unsupervised Twitter sentiment analysis. In Proceedings of the Second Joint Conference on Lexical and Computational Semantics, Atlanta, GA, USA, 13–14 June 2013. [Google Scholar]
- Reckman, H.; Baird, C.; Crawford, J.; Crowell, R.; Micciulla, L.; Sethi, S.; Veress, F. teragram: Rule-based detection of sentiment phrases using sas sentiment analysis. In Proceedings of the Second Joint Conference on Lexical and Computational Semantics, Volume 2: Seventh International Workshop on Semantic Evaluation, Atlanta, GA, USA, 14–15 June 2013; Association for Computational Linguistic: Stroudsburg, PE, USA, 2013; pp. 513–519. [Google Scholar]
- Hu, X.; Tang, J.; Gao, H.; Liu, H. Unsupervised sentiment analysis with emotional signals. In Proceedings of the 22nd International Conference on World Wide Web, Rio de Janeiro, Brazil, 13 May 2013. [Google Scholar]
- Saif, H.; He, Y.; Fernandez, M.; Alani, H. Contextual semantics for sentiment analysis of Twitter. Inf. Process. Manag. 2016, 52, 5–19. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Bose, R.; Choi, Y. Learning general connotation of words using graph-based algorithms. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, Edinburgh, UK, 27–31 July 2011. [Google Scholar]
- Ravi, K.; Ravi, V. A survey on opinion mining and sentiment analysis: Tasks, approaches and applications. Knowl.-Based Syst. 2015, 89, 14–46. [Google Scholar] [CrossRef]
- Chen, L.S.; Liu, C.H.; Chiu, H.J. A neural network based approach for sentiment classification in the blogosphere. J. Informetr. 2011, 5, 313–322. [Google Scholar] [CrossRef]
- Xia, R.; Zong, C.; Li, S. Ensemble of feature sets and classification algorithms for sentiment classification. Inform. Sci. 2011, 181, 1138–1152. [Google Scholar] [CrossRef]
- Abdul-Mageed, M.; Diab, M.; Kübler, S. SAMAR: Subjectivity and sentiment analysis for Arabic social media. Comput. Speech Lang 2014, 28, 20–37. [Google Scholar] [CrossRef]
- Abbasi, A.; France, S.; Zhang, Z.; Chen, H. Selecting attributes for sentiment classification using feature relation networks. IEEE Trans. Knowl. Data Eng. 2011, 23, 447–462. [Google Scholar] [CrossRef]
- Prabowo, R.; Thelwall, M. Sentiment analysis: A combined approach. J. Informetr. 2009, 3, 143–157. [Google Scholar] [CrossRef]
- Zhang, L.; Ghosh, R.; Dekhil, M.; Hsu, M.; Liu, B. Combining Lexicon-Based and Learning-Based Methods for Twitter Sentiment Analysis; Technical Report HPL-2011-89; Hewlett-Packard Development Company: Palo Alto, CA, USA, 2011. [Google Scholar]
- Ghiassi, M.; Skinner, J.; Zimbra, D. Twitter brand sentiment analysis: A hybrid system using n-gram analysis and dynamic artificial neural network. Expert Syst. Appl. 2013, 40, 6266–6282. [Google Scholar] [CrossRef]
- Khuc, V.N.; Shivade, C.; Ramnath, R.; Ramanathan, J. Towards building large-scale distributed systems for Twitter sentiment analysis. In Proceedings of the 27th Annual ACM Symposium on Applied Computing, Trento, Italy, 26–30 March 2012. [Google Scholar]
- Khan, F.H.; Bashir, S.; Qamar, U. TOM, Twitter opinion mining framework using hybrid classification scheme. Decis. Support Syst. 2014, 57, 245–257. [Google Scholar] [CrossRef]
- Speriosu, M.; Sudan, N.; Upadhyay, S.; Baldridge, J. Twitter polarity classification with label propagation over lexical links and the follower graph. In Proceedings of the First Workshop on Unsupervised Learning in NLP, Edinburgh, UK, 30 July 2011. [Google Scholar]
- Cui, A.; Zhang, M.; Liu, Y.; Ma, S. Emotion tokens: Bridging the gap among multilingual twitter sentiment analysis. In Proceedings of the Asia Information Retrieval Symposium, Dubai, United Arab Emirates, 18–20 December 2011. [Google Scholar]
- Cambria, E.; Mao, R.; Han, S.; Liu, Q. Sentic parser: A graph-based approach to concept extraction for sentiment analysis. In Proceedings of the 2022 International Conference on Data Mining Workshops, Orlando, FL, USA, 30 November–3 December 2022. [Google Scholar]
Abbreviation | Description |
---|---|
TSA | Twitter-based Sentiment Analysis |
SNS | Social Networking Service |
SA | Sentiment Analysis |
OM | Opinion Mining |
NLP | Natural Language Processing |
NB | Naïve Bayes |
SVM | Support Vector Machine |
POS | Part of Speech |
BN | Bayesian Network |
ME | Maximum Entropy |
DAG | Directed Acyclic Graph |
NN | Neural Network |
PSO | Particle Swarm Optimization |
3NN | 3-Nearest Neighbors |
PCA | Polarity Classification Algorithm |
Source | Username | Post |
---|---|---|
BaskFan | @Strive: I LIKE watching basketball @NBA game especially LAKERS GAMES. #lakers |
Tag | Description | Tag | Description |
---|---|---|---|
CC | Coordinating conjunction | PRP$ | Possessive pronoun |
CD | Cardinal number | RB | Adverb |
DT | Determiner | RBR | Adverb, comparative |
EX | Existential there | RBS | Adverb, superlative |
FW | Foreign word | RP | Particle |
IN | Proposition or subordinating conjunction | SYM | Symbol |
JJ | Adjective | TO | |
JJR | Adjective, comparative | UH | Interjection |
JJS | Adjective, superlative | VB | Verb, base form |
LS | List item marker | VBD | Verb, past tense |
MD | Modal | VBG | Verb, gerund, or present participle |
NN | Noun, singular or mass | VBN | Verb, past participle |
NNS | Noun, plural | VBP | Verb, non-3rd person singular present |
NNP | Proper noun, singular | VBZ | Verb, 3rd person singular present |
NNPS | Proper noun, plural | WDT | Wh-determiner |
PDT | Predeterminer | WP | Wh-pronoun |
POS | Possessive ending | WP$ | Possessive wh-pronoun |
PRP | Personal pronoun | WRB | Wh-adverb |
Ref | Objective and Algorithm Used | Data Scope | Dataset |
---|---|---|---|
[46] | Feature selection, particle swarm optimization (PSO), CRF | Restaurants and laptop reviews | SemEval-2014 |
[47] | Feature subset selection, discrete PSO, logistic regression model | Financial, spambase, Nursery, etc. | UCI ML Respository |
[48] | Feature selection, Binary PSO, CART, NB, SVM | Handwritten digits | UCI benchmark datasets |
[49] | Selecting emotional features, multi-swarm PSO, SVM | Course review | Datasets from MOOC |
[50] | Feature weighting, optimization-based weighted voting scheme, NB, SVM, LR, Bayesian logistic regression, linear discriminant | Camera, doctor, drug, radio, TV, etc. | Datasets extracted from websites |
[51] | Binary classification, SVM | Movie review | Own |
[52] | Feature weighting, adaptative Kullback–Leibler divergence score, SVM | Movie review, newspaper article, | Polarity dataset, Subjectivity dataset, MPQA dataset |
[53] | Feature selection and weighting, NB, SVM | Movie review | IMDb |
[54] | Supervised term weighting, SVM, kNN | Newsgroup message, Economic news | 20 Newsgroups, Reuters-21578, TanCorp |
[55] | Feature selection, dynamic relevance, and joint mutual information maximization, SVM with RBF kernel, NB, 3-Nearest Neighbors (3NN) | Vehicle, Madelon, USPS, etc. | UCI Repository |
[56] | Feature clustering, divisive algorithm, NB, SVM | News message, HTML documents | 20 Newsgroups, data from open directory project |
[57] | Discriminatively weighted NB, NB, IWNB, BNB, DNB | wide range of domains | UCI datasets |
[58] | Adaptive feature weighting approaches, MNB, CNB, OVA | wide range of domains | Datasets in WEKA |
[59] | Improved NB text classifier, feature weighting, SVM, MNB | Economic news, Newsgroup message | Reuters 21578, 20 Newsgroups |
[60] | Feature weighting and ranking, SVM, kNN, RBF | wide range of domains | UCI ML Respository |
[61] | Content-based recommendation system, feature weighting, | Movie review | IMDb |
[62] | Iterative RELIEF for feature weighting, kNN | wide range of domains | UCI and Microarray datasets |
[63] | Effective feature weighting, improved NB, GRFWNB, RFWNB, DTFWNB, CFSFWNB, CFSNB, and DFWNB. | wide range of domains | UCI ML Respository |
[64] | Imbalanced text classification, probability-based term weighting, SVM, NB | Archive of engineering technical papers, Newsgroup message | MCV1 and Reuters 21578 |
[65] | ITD and ITS based supervised term weighting, SVM | Movie review, product review | Cornell movie review, product reviews from Amazon, Stanford large movie review data set |
[66] | Comparative study of feature weighting, SVM | Economic news | Reuters 21578 |
[67] | Concept-based linguistic methods, Naive Bayes, Neural Network | Tweet | Manually annotated dataset |
[68] | Decision tree, logistic regression, multinomial naive Bayes, support vector machine, random forest, and Bernoulli Naive Bayes | Tweet | Manually collected dataset |
Ref | Objective and Algorithm Used | Data Scope | Dataset |
---|---|---|---|
[70] | Classification of text using fine-grained attitude labels, semantic, lexicon created by own | User-generated personal story | Dataset from Experience Project website |
[71] | Lexicon-based approach, document discourse structure, sentiment classifier, semantic, lexicon created by own | Movie review | IMDB |
[72] | Lexicon-based comments-oriented news sentiment analyzer, NLP, PMI-IR, taxonomy lexicon | News information | N/A |
[73] | Comparative analysis of emotion detection, supervised and lexical knowledge-based approach, SVM | Corpus of emotions | ISEAR, Emotinet |
[74] | Affect-based search, emotion lexicon by crowdsourcing | Emails, fairy tales, Novels, etc | Corpus of enron email |
[75] | Unsupervised system of SSA-UO, rule-based classifier | Unlabeled Twitter message, SMS message | SemEval |
[76] | Rule-based pattern matching system, rule-based classifier | Message of Twitter and SMS | SemEval |
[77] | Unsupervised sentiment analysis with emotional signals, sentiment lexicon | Tweet message | STS, OMD |
[78] | Entity and tweet-level sentiment analysis, generic sentiment lexicon | Tweet message | OMD, HCR, STS-Gold |
[79] | Detection of connotative polarity, connotation lexicon | Tweet message | SemEval-2007, Sentiment twitter |
Ref | Objective and Algorithm Used | Data Scope | Dataset |
---|---|---|---|
[81] | Neural-network-based hybrid approach, sentiment classifier | Blogger comments and product reviews | Datasets collected from LiveJournal, Review Centre |
[82] | Comparative study of ensemble technique for sentiment analysis, NB, SVM, maximum entropy | Movie review, product review | Cornell movie-review corpora |
[83] | A system for subjectivity and sentiment analysis (SSA), manually created polarity lexicon | Chat messages, Arabic tweets | multi-domain sentiment dataset from Amazon |
[84] | Rule-based multivariate feature selection, linear kernel SVM | Online review | DAR, TGRD, THR, MONT |
[85] | Hybrid method combining rule-based classification and machine learning, SVM, SBC, RBC, GIBC | Movie review, product review, and MySpace comment | Epinions, Edmunds, Movie review [15] |
[86] | Entity-level sentiment analysis method, opinion lexicon, SVM | Tweet message | Polarity dataset |
[87] | Supervised feature reduction using n-grams, Twitter-specific lexicon, SVM | Tweet message | Dataset extracted from Twitter API |
[88] | Large-scale distributed system for real-time Twitter sentiment analysis, lexicon builder, lexicon-based classifier, adaptive logistics regression | Tweet message | Dataset extracted from Twitter API |
[89] | Polarity Classification Algorithm (PCA), EEC, IPC, SWNC | Tweet message | Dataset extracted from Twitter API |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Guo, J.; Yuan, C.; Li, B. Sentiment Analysis of Twitter Data. Appl. Sci. 2022, 12, 11775. https://doi.org/10.3390/app122211775
Wang Y, Guo J, Yuan C, Li B. Sentiment Analysis of Twitter Data. Applied Sciences. 2022; 12(22):11775. https://doi.org/10.3390/app122211775
Chicago/Turabian StyleWang, Yili, Jiaxuan Guo, Chengsheng Yuan, and Baozhu Li. 2022. "Sentiment Analysis of Twitter Data" Applied Sciences 12, no. 22: 11775. https://doi.org/10.3390/app122211775
APA StyleWang, Y., Guo, J., Yuan, C., & Li, B. (2022). Sentiment Analysis of Twitter Data. Applied Sciences, 12(22), 11775. https://doi.org/10.3390/app122211775