Tensile Characteristics and Fracture Mode of Frozen Fractured Rock Mass Based on Brazilian Splitting Test
Abstract
:1. Introduction
2. Test Preparation
2.1. Specimens Processing
2.2. Test Results of Frozen Rock Specimens in Different Ice-Filled Crack Angles
2.2.1. Analysis of Tensile Strength
2.2.2. Analysis of Fracture Mode
2.3. RFPA3D Feasibility Verification
3. Multi-Factor Discussion
3.1. Different Lengths for Ice-Filled Crack
3.2. Different Widths for Ice-Filled Cracks
4. Conclusions
- (1).
- The tensile strength of frozen rock specimens decreased gradually and then increased with the increase in the ice-filled crack angle. When the ice-filled crack angle was 0°, the tensile strength of the ice-filled crack frozen rock specimen was similar to that of the intact frozen rock specimen. The tensile strength was the lowest when the ice-filled crack angle was 45°.
- (2).
- The peak loads of frozen rock with 1.5, 2, 3, and 4 mm width ice-filled cracks were 2.73, 2.38, 2.36, and 2.34 kN, respectively. The peak loads of frozen rock with 10, 15, 20, and 25 mm length ice-filled cracks were 4.63, 4.35, 4.11 and 4.04 kN, respectively. The tensile strength of frozen rock gradually decreased with the increase in the length and width of the ice-filled cracks.
- (3).
- Except for the 0° ice-filled cracks, the frozen fractured rock masses incurred damage elements at the ice-filled crack first, and then the wing crack started from the tip of the ice-filled crack and extended continuously, leading to the failure of the frozen rock specimens. When the angle of the ice-filled crack was 0°, the ice crack was perpendicular to the loading direction, and the effects on the frozen rock specimen were small.
- (4).
- The frozen rock specimens showed typical brittle failure characteristics. With the loading process, the model experienced four stages: internal microcrack initiation, surface macroscopic crack generation, macroscopic crack propagation, and complete failure.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, S.B.; Liu, Y.Z.; Guo, Y.L.; Zhang, Z.; Cai, Y. Strength and failure characteristics of rock-like material containing single crack under freeze-thaw and uniaxial compression. Cold Reg. Sci. Technol. 2019, 162, 1–10. [Google Scholar] [CrossRef]
- Liu, N.F.; Li, N.; Li, G.F.; Song, Z.P.; Wang, S.J. Method for Evaluating the Equivalent Thermal Conductivity of a Freezing Rock Mass Containing Systematic Fractures. Rock Mech. Rock Eng. 2022, 55, 7333–7355. [Google Scholar] [CrossRef]
- Wang, T.T.; Tang, C.A.; Li, P.F.; Tang, S.; Liu, M.H.; Zhang, B.B. Frost-Heaving Cracking Sensitivity of Single-Flaw Rock Mass Based on a Numerical Experimental Method. Geofluids 2021, 2021, 3436119. [Google Scholar] [CrossRef]
- Ma, D.D.; Xiang, H.S.; Ma, Q.Y.; Kaunda, E.E.; Huang, K.; Su, Q.Q.; Yao, Z.M. Dynamic damage constitutive model of frozen silty soil with prefabricated crack under uniaxial load. J. Eng. Mech. 2021, 147, 04021033. [Google Scholar] [CrossRef]
- Xu, S.H.; Li, N.; Wang, X.D.; Xu, Z.G.; Yuan, K.K.; Tian, Y.Z.; Wang, L.L. Damage test and degradation model of saturated sandstone due to cyclic freezing and thawing of rock slopes of open-pit coal mine. Chin. J. Rock Mech. Eng. 2016, 35, 2561–2571. [Google Scholar]
- Wu, N.; Liang, Z.Z.; Zhang, Z.H.; Li, S.H.; Lang, Y.X. Development and Verification of Three-Dimensional Equivalent Discrete Fracture Network Modelling Based on the Finite Element Method. Eng. Geol. 2022, 306, 106759. [Google Scholar] [CrossRef]
- Wan, W.; Li, C.C. Microscopic and Acoustic Interpretations of the Physics of Rock Burst and the Difference in Fracturing Patterns in Class I and Class II Rocks. Rock Mech. Rock Eng. 2022, 55, 6841–6862. [Google Scholar] [CrossRef]
- Yang, S.Q.; Yin, P.F.; Huang, Y.H. Experiment and Discrete Element Modelling on Strength, Deformation and Failure Behaviour of Shale under Brazilian Compression. Rock Mech. Rock Eng. 2019, 52, 4339–4359. [Google Scholar] [CrossRef]
- Wang, M.; Ping, C. Experimental study on the validity and rationality of four Brazilian disc tests. Geothch. Geol. Eng. 2018, 36, 63–76. [Google Scholar] [CrossRef]
- Haeri, H.; Shahriar, K.; Marji, M.F.; Moarefvand, P. Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks. Int. J. Rock Mech. Min. Sci. 2014, 67, 20–28. [Google Scholar] [CrossRef]
- Gao, M.; Liang, Z.Z.; Jia, S.P.; Zou, J.Q. Tensile Properties and Tensile Failure Criteria of Layered Rocks. Appl. Sci. 2022, 12, 6063. [Google Scholar] [CrossRef]
- Zhou, J.; Zeng, Y.J.; Guo, Y.T.; Chang, X.; Liu, L.W.; Wang, L.; Hou, Z.K.; Yang, C.H. Effect of natural filling fracture on the cracking process of shale Brazilian disc containing a central straight notched flaw. J. Pet. Sci. Eng. 2021, 196, 107993. [Google Scholar] [CrossRef]
- Zhao, Z.H.; Liu, Z.N.; Pu, H.; Li, X. Effect of thermal treatment on Brazilian tensile strength of granites with different grain size distributions. Rock Mech. Rock Eng. 2018, 51, 1293–1303. [Google Scholar] [CrossRef]
- Liu, B.; Sun, Y.D.; Wang, B.; Han, Y.H.; Zhang, R.H.; Wang, J.X. Effect of water content on mechanical and electrical characteristics of the water-rich sandstone during freezing. Environ. Earth Sci. 2020, 79, 236–249. [Google Scholar] [CrossRef]
- Jia, H.L.; Zi, F.; Yang, G.S.; Li, G.Y.; Shen, Y.J.; Sun, Q.; Yang, P.Y. Influence of pore water (ice) content on the strength and deformability of frozen argillaceous siltstone. Rock Mech. Rock Eng. 2020, 53, 967–974. [Google Scholar] [CrossRef]
- Kodama, J.; Goto, T.; Fujii, Y.; Hagan, P. The effects of water content, temperature and loading rate on strength and failure process of frozen rocks. Int. J. Rock Mech. Min. Sci. 2013, 62, 1–13. [Google Scholar] [CrossRef]
- Wang, Y.; Yi, Y.F.; Li, C.H.; Han, J.Q. Anisotropic fracture and energy characteristics of a Tibet marble exposed to multi-level constant-amplitude (MLCA) cyclic loads: A labscale testing. Eng. Fract. Mech. 2021, 244, 107550. [Google Scholar] [CrossRef]
- Jia, H.L.; Ding, S.; Zi, F.; Dong, Y.H.; Shen, Y.J. Evolution in sandstone pore structures with freeze-thaw cycling and interpretation of damage mechanisms in saturated porous rocks. Catena 2020, 195, 104915. [Google Scholar] [CrossRef]
- Zhou, X.P.; Fu, Y.H.; Wang, Y.; Zhou, J.N. Experimental study on the fracture and fatigue behaviors of flawed sandstone under coupled freeze-thaw and cyclic loads. Theor. Appl. Fract. Mech. 2022, 119, 103299. [Google Scholar] [CrossRef]
- Zhang, H.M.; Xia, H.J.; Yang, G.S.; Zhang, M.J.; Peng, C.; Ye, W.J.; Shen, Y.J. Experimental research of influences of freeze-thaw cycles and confining pressure on physical-mechanical characteristics of rocks. J. China Coal Soc. 2018, 43, 441–448. [Google Scholar]
- Bayram, F. Predicting mechanical strength loss of natural stones after freeze-thaw in cold regions. Cold Reg. Sci. Technol. 2012, 83–84, 98–102. [Google Scholar] [CrossRef]
- Aoki, K.; Hibiya, K.; Yoshida, T. Storage of refrigerated liquefied gases in rock caverns: Characteristics of rock under very low temperatures. Tunn. Undergr. Space Technol. 1990, 5, 319–325. [Google Scholar] [CrossRef]
- Yamabe, T.; Neaupane, K.M. Determination of some thermo-mechanical properties of Sirahama sandstone under subzero temperature conditions. Int. J. Rock Mech. Min. Sci. 2001, 38, 102–1034. [Google Scholar] [CrossRef]
- Xu, G.M.; Liu, Q.S.; Peng, W.W.; Chang, X.X. Experimental study on basic mechanical behaviors of rocks under low temperatures. Chin. J. Rock Mech. Eng. 2006, 25, 2502–2508. (In Chinese) [Google Scholar]
- Yang, G.S.; Xi, J.M.; Li, H.J.; Cheng, L. Experimental study of rock mechanical properties under triaxial compressive and frozen conditions. Chin. J. Rock Mech. Eng. 2010, 29, 459–464. (In Chinese) [Google Scholar]
- Xi, J.M.; Yang, G.S.; Pang, L.; Lv, X.T.; Liu, F.L. Experimental study on basic mechanical behaviors of sandy mudstone under low freezing temperature. J. China Coal Soc. 2014, 39, 1262–1268. [Google Scholar]
- Shan, R.L.; Yang, H.; Guo, Z.M.; Liu, X.; Song, L. Experimental study of strength characters of saturated red sandstone on negative temperature under triaxial compression. Chin. J. Rock Mech. Eng. 2014, 33, 3657–3664. [Google Scholar]
- Li, T.; Ma, Y.J.; Liu, B.; Sheng, H.L.; He, P. Strength characteristics and elastic modulus evolution of frozen gray sandstone under cyclic loading. J. China Coal Soc. 2018, 43, 2438–2443. [Google Scholar]
- Bai, Y.; Shan, R.L.; Ju, Y.; Wu, Y.X.; Tong, X.; Han, T.Y.; Dou, H.Y. Experimental study on the strength, deformation and crack evolution behaviour of red sandstone samples containing two ice-filled fissures under triaxial compression. Cold Reg. Sci. Technol. 2020, 174, 103061. [Google Scholar] [CrossRef]
- Yang, H.; Shan, R.L.; Zhang, J.X.; Wu, F.M.; Guo, Z.M. Mechanical properties of frozen rock mass with two diagonal intersected fractures. Int. J. Min. Sci. Technol. 2018, 28, 631–638. [Google Scholar] [CrossRef]
- Shloido, G.A. Determining the tensile strength of frozen ground. Hydrotech. Constr. 1968, 2, 238–240. [Google Scholar] [CrossRef]
- Wang, S.Y.; Sloan, S.W.; Tang, C.A. Three-dimensional numerical investigations of the failure mechanism of a rock disc with a central or eccentric hole. Rock Mech. Rock Eng. 2014, 47, 2117–2137. [Google Scholar] [CrossRef]
- Fan, N.; Wang, J.R.; Deng, C.B.; Fan, Y.P.; Wang, T.T.; Guo, X.Y. Quantitative Characterization of Coal Microstructure and Visualization Seepage of Macropores Using CT-Based 3D Reconstruction. J. Nat. Gas Sci. Eng. 2020, 81, 103384. [Google Scholar] [CrossRef]
- Liang, Z.; Wu, N.; Li, Y.; Li, H.; Li, W. Numerical Study on Anisotropy of the Representative Elementary Volume of Strength and Deformability of Jointed Rock Masses. Rock Mech. Rock Eng. 2019, 52, 4387–4402. [Google Scholar] [CrossRef]
- Khoojine, A.S.; Shadabfar, M.; Tabriz, Y.E. A Mutual Information-Based Network Autoregressive Model for Crude Oil Price Forecasting Using Open-High-Low-Close Prices. Mathematics 2022, 10, 10173172. [Google Scholar]
- Zhu, W.C.; Tang, C.A. Numerical simulation of Brazilian disk rock failure under static and dynamic loading. Int. J. Rock Mech. Min. Sci. 2006, 43, 236–252. [Google Scholar] [CrossRef]
- Wu, N.; Liang, Z.Z.; Li, Y.; Qian, X.K.; Gong, B. Effect of confining stress on representative elementary volume of jointed rock masses. Geomech. Eng. 2019, 18, 627–638. [Google Scholar]
- Shadabfar, M.; Cheng, L.S. Probabilistic Approach for Optimal Portfolio Selection Using a Hybrid Monte Carlo Simulation and Markowitz Model. Alex. Eng. J. 2020, 59, 3381–3393. [Google Scholar] [CrossRef]
- Tang, C.A. Numerical simulation of progressive rock failure and associated seismicity. Int. J. Rock Mech. Min. Sci. 1997, 34, 249–261. [Google Scholar] [CrossRef]
- Liao, Z.Y.; Zhu, J.B.; Tang, C.A. Numerical investigation of rock tensile strength determined by direct tension, Brazilian and three-point bending tests. Int. J. Rock Mech. Min. Sci. 2019, 115, 21–32. [Google Scholar] [CrossRef]
Elasticity Modulus (MPa) | m | Compressive Strength (MPa) | m | Poisson Ratio | Friction Angle | |
---|---|---|---|---|---|---|
Granite | 32,000 | 5 | 147 | 5 | 0.25 | 30° |
Ice | 6000 | 10 | 8 | 10 | 0.35 | 26.5° |
Cardboard | 50,000 | 100 | 1 e8 | 100 | 0.3 | 30° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Li, P.; Tang, C.; Zhang, B.; Yu, J.; Geng, T. Tensile Characteristics and Fracture Mode of Frozen Fractured Rock Mass Based on Brazilian Splitting Test. Appl. Sci. 2022, 12, 11788. https://doi.org/10.3390/app122211788
Wang T, Li P, Tang C, Zhang B, Yu J, Geng T. Tensile Characteristics and Fracture Mode of Frozen Fractured Rock Mass Based on Brazilian Splitting Test. Applied Sciences. 2022; 12(22):11788. https://doi.org/10.3390/app122211788
Chicago/Turabian StyleWang, Tingting, Pingfeng Li, Chun’an Tang, Bingbing Zhang, Jiang Yu, and Tao Geng. 2022. "Tensile Characteristics and Fracture Mode of Frozen Fractured Rock Mass Based on Brazilian Splitting Test" Applied Sciences 12, no. 22: 11788. https://doi.org/10.3390/app122211788
APA StyleWang, T., Li, P., Tang, C., Zhang, B., Yu, J., & Geng, T. (2022). Tensile Characteristics and Fracture Mode of Frozen Fractured Rock Mass Based on Brazilian Splitting Test. Applied Sciences, 12(22), 11788. https://doi.org/10.3390/app122211788