Analysis of Optimal Loading Angle in Dynamic Flattened Brazilian Disc Splitting Test for Concrete
Abstract
:1. Introduction
2. Numerical Simulations
3. Theoretical Analysis
4. Experimental Procedures
4.1. Specimen Preparation
4.2. Experimental Apparatus
4.3. Loading Procedure
5. Results and Analysis
5.1. Crack Development in Flattened BD Test
5.2. Strain Analysis of Crack Propagation in BD Specimen
5.3. Influence of Loading Angle on Tensile Strength of Specimens
6. Conclusions
- (1)
- The numerical simulation results show that the starting point of the traditional Brazilian disc is affected by the loading speed. When the loading speed is relatively small, the crack propagation direction is from the transmission bar end to the incident bar end. When the loading speed is increased, the crack growth direction is changed. It is essentially related to stress wave propagation.
- (2)
- The Griffith equivalent stress theory well explained the optimal loading angle range in flattened BD tests on concrete from a theoretical view. With the increase in the loading angle, the maximum stress transferred from the loading end to the center of the specimen.
- (3)
- The optimal loading angle in dynamic flattened Brazilian disc splitting test for concrete is between 28° and 30°. For different loading rates, this loading angle can still effectively ensure the central cracking of the specimen.
- (4)
- At the same loading rate, the dynamic tensile strength with non-center crack initiation obtained from the loading angle less than 28° underestimates the inherent tensile strength.
7. Further Research
- (1)
- Carrying out the effect of loading angle on crack extension for different strength concretes.
- (2)
- Carrying out the crack evolution process in 3D space on the basis of experiments with the help of numerical simulations.
- (3)
- Performing simulations to explore the crack extension mechanism of other similar materials.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
a1,a2,a3,a4 | Intermediate variable | N | Pressure hardening exponent |
A | Normalized cohesive strength | μc,μl | Crushing volumetric strain, Locking volumetric strain |
A1,A2 | Incident bar, transmission bar and disc contact surface, respectively | PC, Pl, P | Crushing pressure, Locking pressure, peak load |
b1,b2,b3,b4 | Intermediate variable | Mass density | |
B | Normalized pressure hardening | εI,εT,εR | Strain signals of the incident, reflected and transmitted waves |
c1,c2,c3,c4 | Intermediate variable | σx,σy,τxy,σG,σT | Horizontal stress, vertical stress, shear stress, Griffith’s equivalent stress and the tensile strength of concrete of the point |
D0, D1,D2 | Damage constant | σxmax,σymax,σx1max | x,y-compressive stress, x-tensile stress |
E0 | Elasticity modulus | θ | Loading angle |
εfmin | Amount of plastic strain before fracture | f1,f2 | Dimensionless stress, dimensionless Griffith’s equivalent stress |
fC | Compressive strength | K1,K2,K3 | Pressure constant |
G | Shear modulus | H,R,r | Height and outer radius and the inner radius |
T | Maximum tensile hydrostatic pressure | σ1,σ2,σ3 | Three principal stresses |
Impact velocities | Loading rate |
Appendix A
References
- Healy, D.; Jones, R.R.; Holdsworth, R.E. Three-dimensional brittle shear fracturing by tensile crack interaction. Nature 2006, 439, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Zhao, W.; Tan, X. An Experimental Study on Dynamic Mechanical Properties of Fiber-Reinforced Concrete under Different Strain Rates. Appl. Sci. 2018, 10, 1904. [Google Scholar]
- Temsah, Y.; Jahami, A.; Khatib, J.; Sonebi, M. Numerical analysis of a reinforced concrete beam under blast loading. In Proceedings of the MATEC Web Of Conferences, Rabat, Morocco, 22–25 November 2017; Volume, 149, p. 02063. [Google Scholar] [CrossRef]
- Temsah, Y.; Jahami, A.; Aouad, C. Silos structural response to blast loading. Eng. Struct. 2021, 243, 112671. [Google Scholar] [CrossRef]
- Guo, Y.; Gao, G.; Jing, L.; Shim, V.P.W. Dynamic Properties of Mortar in High-strength Concrete. Int. J. Impact Eng. 2022, 165, 1–30. [Google Scholar] [CrossRef]
- Cusatis, G. Strain-rate effects on concrete behavior. Int. J. Impact Eng. 2011, 38, 162–170. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, J. Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads. Int. J. Rock Mech. Min. Sci. 2013, 60, 423–439. [Google Scholar] [CrossRef]
- Yue, C.; Ma, H.; Yu, H.; Zhang, J.; Chen, L.; Mei, Q.; Tan, Y.; Liu, T. Experimental and Three-dimensional Mesoscopic Simulation Study on Coral Aggregate Seawater Concrete with Dynamic Direct Tensile Technology. Int. J. Impact Eng. 2021, 150, 103776. [Google Scholar] [CrossRef]
- Sarfarazi, V.; Ghazvinian, A.; Schubert, W.; Nejati, H. A new approach for measurement of tensile strength of concrete. Period. Polytech. Civ. Eng. 2016, 60, 8328. [Google Scholar] [CrossRef] [Green Version]
- Truong, V.; Kim, D. A review paper on direct tensile behavior and test methods of textile reinforced cementitious composites. Compos. Struct. 2021, 263, 113661. [Google Scholar] [CrossRef]
- Songtao, L.; Liu, C.; Yao, H.; Zheng, J. Comparisons of synchronous measurement methods on various moduli of asphalt mixtures. Constr. Build. Mater. 2018, 158, 1035–1045. [Google Scholar]
- Li, Q.; Zhang, Z.; Sang, L. Virtual experimental study on the effect of coarse aggregate angularity on tensile performance of asphalt mixtures. J. Rail Way Sci. Eng. 2020, 17, 1429–1435. [Google Scholar]
- Wang, L.; Jia, S.; Yi, Y. Effects of damage evolution on tensile strength measurement of nuclear graphite material by ring compression test. J. Nucl. Mater. 2021, 555, 153128. [Google Scholar] [CrossRef]
- Rohr, N.; Fischer, J. Effect of aging and curing mode on the compressive and indirect tensile strength of resin composite cements. Head Face Med. 2017, 13, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, R.C.; Thompson, N.; Tedesco, J.W. Split-Hopkinson Pressure-Bar tests on Concrete and Mortar in Tension and Compression. Mater. J. 1989, 86, 475–481. [Google Scholar]
- Khosravani, M.; Silani, M.; Weinberg, K. Fracture studies of Ultra-High Performance Concrete using dynamic Brazilian tests. Theor. Appl. Fract. Mech. 2018, 93, 302–310. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, S. Ring Method Test on the early-Age Anti-Cracking Capability of High-Performance Lithium Slag Concrete. Appl. Mech. Mater. 2011, 94–96, 782–785. [Google Scholar] [CrossRef]
- Wang, C.; Gao, G.; Jia, Q. Investigation of optimum sample shape for the Luong core tension test. Projectilein of Engineering Geology and the Environment. Engineering 2020, 79, 831–844. [Google Scholar]
- ISRM. Suggested methods for determining tensile strength of rock materials. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1978, 15, 99–103. [Google Scholar] [CrossRef]
- ISO 6508-1:2015; Metallic Materials—Rockwell Hardness Test—Part 1: Test Methods. International Organization Standardization (ISO): Geneva, Switzerland, 2015.
- ASTM-C496; Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens; Annual Book of ASTM Standards. ASTM: West Conshohocken, PA, USA, 2004; Volume 11, pp. 336–341.
- DIN EN 12390-6; Testing Hardened Concrete—Part 6: Tensile Splitting Strength of Test Specimens. Deutsches Institut Für Normung (DIN): Berlin, Germany,, 2010.
- Liu, K.; Tanimura, S. Numerical analysis for dynamic stress concentration in a rectangular block due to impact. Int. J. Impact Eng. 1997, 19, 653–666. [Google Scholar] [CrossRef]
- Ye, J.; Wu, F.; Sun, J. Estimation of the tensile elastic modulus using Brazilian disc by applying diametrically opposed concentrated loads. Int. J. Rock Mech. Min. Sci. 2009, 46, 568–576. [Google Scholar]
- Satoh, Y. Position and load of failure in Brazilian test; A numerical analysis by Griffith criterion. J. Soc. Mater. Sci. 1987, 36, 1219–1224. [Google Scholar] [CrossRef]
- Mahanta, B.; Sirdesai, N.; Sirdesaix, T.N.; Ranjith, P.G. Experimental Study of Strain Rate Sensitivity to Fracture Toughness of Rock using Flattened Brazilian Disc. Procedia Eng. 2017, 191, 256–262. [Google Scholar] [CrossRef]
- Hondros, G. The evaluation of Poisson’s ratio and the modulus of materials of low tensile resistance by the Brazilian (Indirect tensile) test with particular reference to concrete. J. Appl. Sci. 1959, 10, 243–268. [Google Scholar]
- Mellor, M.; Hawkes, I. Measurement of tensile strength by diametral compression of discs and annuli. Eng. Geol. 1971, 3, 173–225. [Google Scholar] [CrossRef]
- Markides, C.F.; Pazis, D.N.; Kourkoulis, S.K. Closed full-field solutions for stresses and displacements in the Brazilian disk under distributed radial load. Int. J. Rock Mech. Min. Sci. 2010, 47, 227–237. [Google Scholar] [CrossRef]
- Wang, Q.; Xing, L. Determination of fracture toughness KIC by using the flattened Brazilian disk specimen for rocks. Eng. Fract. Mech. 1999, 64, 193–201. [Google Scholar] [CrossRef]
- Robert, P.; Marcin, K. Influence of Imperfect Position of a Striker and Input Bar on Wave Propagation in a Split Hopkinson Pressure Bar (SHPB) Setup with a Pulse-Shape Technique. Appl. Sci. 2020, 10, 2423. [Google Scholar]
- Wang, M.; Cao, P. Numerical study on flattened Brazilian test and its empirical formula. Electron. J. Geotech. Eng. 2015, 20, 12211–12224. [Google Scholar]
- Wang, M.; Cao, P. Numerical Analysis of Flattened Brazilian Disc Test Based on the Cusp Catastrophe Theory. Math. Probl. Eng. 2016, 2016, 4517360. [Google Scholar] [CrossRef] [Green Version]
- Kaklis, K.; Agioutantis, Z.; Sarris, E.; Pateli, A. A theoretical and numerical study of discs with flat edges under diametral compression (flat Brazilian test). In Proceedings of the 5th GRACM International Congress on Computational Mechanics, Limassol, Cyprus, 29 June–1 July 2005; pp. 437–444. [Google Scholar]
- Kucewicz, M.; Baranowski, P.; Malachowski, J. Dolomite fracture modeling using the Johnson-Holmquist concrete material model: Parameter determination and validation. J. Rock Mech. Geotech. Eng. 2021, 13, 335–350. [Google Scholar] [CrossRef]
- Pajak, M.; Baranowski, P.; Janiszewski, J. Experimental testing and 3D meso-scale numerical simulations of SCC subjected to high compression strain rates. Constr. Build. Mater. 2021, 302, 124379. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, L.; Lu, Y.; Chen, J.R.; Zhang, J.H. Semi-analytical and Numerical Studies on the Flattened Brazilian Splitting Test Used for Measuring the Indirect Tensile Strength of Rocks. Rock Mech. Rock Eng. 2015, 48, 1849–1866. [Google Scholar] [CrossRef]
- Griffith, F. The Phenomena of Rupture and Flow in Solids. Philos. Trans. R. Soc. London. Ser. A Contain. Pap. A Math. Or Phys. 1921, 221, 163–198. [Google Scholar]
- Hoek, E.; Martin, C. Fracture initiation and propagation in intact rock—A review. J. Rock Mech. Geotech. Eng. 2014, 6, 287–300. [Google Scholar] [CrossRef] [Green Version]
- Ammeri, A.; Neifar, M.; Ibrahim, K. Experimental and Numerical Study of the Split Tensile Test on a Silty Soil: Discrete Element Analysis. IJEART 2016, 5, 929–936. [Google Scholar]
- Yu, Q.; Tang, C.; Yang, T.; Tang, S.; Liu, H. Numerical analysis of influence of central angle of flats on tensile strength of granite in split test with flattened disc. Rock Soil Mech. 2008, 29, 3251–3255+3260. [Google Scholar]
- Bahaaddini, M.; Mehdi, S.; Hossein, M.; Rahimi, E. Numerical assessment of rupture mechanisms in Brazilian test of brittle materials. Int. J. Solids Struct. 2019, 180, 1–12. [Google Scholar] [CrossRef]
Sign | ρ/kg.m−3 | fc/MPa | G/GPa | A | B | C | N | T/MPa | εfmin |
Value | 2425 | 52 | 13.9 | 0.80 | 1.60 | 0.007 | 0.61 | 3 | 0.007 |
Sign | Pc/MPa | μc | Pl/MPa | μl | D1 | D2 | K1/MPa | K2/MPa | K3/MPa |
Value | 11.7 | 6.26 × 10−4 | 800 | 0.06 | 0.0452 | 10 | 85 | −171 | 208 |
Loading Angle (°) | Compressive Stress σxmax | Compressive Stress σymax | Tensile Stress σx1max | σxmax/σx2max | σymax/σx1max |
---|---|---|---|---|---|
20 | 18.11 | 12.87 | 1.88 | 9.63 | 6.84 |
22 | 16.52 | 12.13 | 1.86 | 8.88 | 6.52 |
24 | 15.15 | 11.48 | 1.83 | 8.27 | 6.27 |
26 | 13.96 | 10.90 | 1.81 | 7.71 | 6.02 |
28 | 13.08 | 10.36 | 1.78 | 7.34 | 5.82 |
30 | 12.21 | 9.86 | 1.74 | 7.01 | 5.66 |
Cement | Fly Ash | Water | Grit | Admixture |
---|---|---|---|---|
495 | 48 | 160 | 830 | 14 |
Specimen | Density/(g.cm−3) | Peak Stress/MPa | Peak Strain | Elastic Modulus/MPa | Deformation Modulus/GPa | Poisson’s Ratio |
---|---|---|---|---|---|---|
SCC | 2.425 | 52 | 0.0213 | 4.981 | 1.732 | 0.25 |
Test Number | P/MPa | v/m·s−1 | /GPa·s−1 | ||
---|---|---|---|---|---|
1 | 0.12 | 4.7 | 4.9 | 364 | 343 |
0.12 | 5.1 | 328 | |||
0.12 | 4.9 | 338 | |||
2 | 0.20 | 9.8 | 9.6 | 583 | 587 |
0.20 | 9.7 | 540 | |||
0.20 | 9.3 | 667 | |||
3 | 0.30 | 12.3 | 12.5 | 790 | 764 |
0.30 | 12.5 | 742 | |||
0.30 | 12.8 | 761 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, B.; Xing, H.; Mu, C.; Li, J.; Xu, T.; Liu, W. Analysis of Optimal Loading Angle in Dynamic Flattened Brazilian Disc Splitting Test for Concrete. Appl. Sci. 2022, 12, 11834. https://doi.org/10.3390/app122211834
Shi B, Xing H, Mu C, Li J, Xu T, Liu W. Analysis of Optimal Loading Angle in Dynamic Flattened Brazilian Disc Splitting Test for Concrete. Applied Sciences. 2022; 12(22):11834. https://doi.org/10.3390/app122211834
Chicago/Turabian StyleShi, Benjun, Haozhe Xing, Chaomin Mu, Jie Li, Tianhan Xu, and Wei Liu. 2022. "Analysis of Optimal Loading Angle in Dynamic Flattened Brazilian Disc Splitting Test for Concrete" Applied Sciences 12, no. 22: 11834. https://doi.org/10.3390/app122211834
APA StyleShi, B., Xing, H., Mu, C., Li, J., Xu, T., & Liu, W. (2022). Analysis of Optimal Loading Angle in Dynamic Flattened Brazilian Disc Splitting Test for Concrete. Applied Sciences, 12(22), 11834. https://doi.org/10.3390/app122211834