A DDoS Detection and Prevention System for IoT Devices and Its Application to Smart Home Environment
Abstract
:1. Introduction
2. Related Works
3. Problem Statement
4. Proposed Scheme
4.1. Overview of the Proposed Scheme
4.2. Setting up the Botnet on Victim IoT Devices
4.3. Detection and Mitigation of DDoS Attack at Home Router
4.3.1. Filtration
Blacklist-Based Filtration
Whitelist-Based Filtration
4.3.2. Detection Phase
4.3.3. Screening Phase
4.3.4. Publishing of Malicious Information with Other Home Routers
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Silva, B.N.; Khan, M.; Han, K. Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities. Sustain. Cities Soc. 2018, 38, 697–713. [Google Scholar] [CrossRef]
- Research, J. Iot Connections to Grow 140% to Hit 50 Billion By 2022, as Edge Computing Accelerates Roi. Available online: https://www.juniperresearch.com/press/iot-connections-to-grow-140pc-to-50-billion-2022 (accessed on 31 August 2022).
- Jan, B.; Farman, H.; Khan, M.; Imran, M.; Islam, I.U.; Ahmad, A.; Ali, S.; Jeon, G. Deep learning in big data analytics: A comparative study. Comput. Electr. Eng. 2019, 75, 275–287. [Google Scholar] [CrossRef]
- Doucet, K.; Zhang, J. Learning cluster computing by creating a Raspberry Pi cluster. In Proceedings of the SouthEast Conference, Kennesaw, GA, USA, 7–8 October 2017. [Google Scholar]
- Coelho, J.; Nogueira, L. Enabling Processing Power Scalability with Internet of Things (IoT) Clusters. Electronics 2021, 11, 81. [Google Scholar] [CrossRef]
- Fotohi, R.; Pakdel, H. A lightweight and scalable physical layer attack detection mechanism for the internet of things (IoT) using hybrid security schema. Wirel. Pers. Commun. 2021, 119, 3089–3106. [Google Scholar] [CrossRef]
- Rao, V.; Prema, K.V. A review on lightweight cryptography for Internet-of-Things based applications. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 8835–8857. [Google Scholar] [CrossRef]
- Kolias, C.; Kambourakis, G.; Stavrou, A.; Voas, J. DDoS in the IoT: Mirai and other botnets. Computer 2017, 50, 80–84. [Google Scholar] [CrossRef]
- Antonakakis, M.; April, T.; Bailey, M.; Bernhard, M.; Bursztein, E.; Cochran, J.; Zhou, Y. Understanding the mirai botnet. In Proceedings of the 26th USENIX security symposium (USENIX Security 17), Vancouver, BC, USA, 23 May 2017; pp. 1093–1110. [Google Scholar]
- Marzano, A.; Alexander, D.; Fonseca, O.; Fazzion, E.; Hoepers, C.; Steding-Jessen, K.; Chaves, M.H.P.C.; Cunha, Í.; Guedes, D.; Meira, W. The evolution of bashlite and mirai iot botnets. In Proceedings of the 2018 IEEE Symposium on Computers and Communications (ISCC), Natal, Brazil, 25–28 June 2018; pp. 813–818. [Google Scholar]
- Tanabe, R.; Tamai, T.; Fujita, A.; Isawa, R.; Yoshioka, K.; Matsumoto, T.; Gañán, G.; Van Eeten, M. Disposable botnets: Examining the anatomy of iot botnet infrastructure. In Proceedings of the 15th International Conference on Availability, Reliability and Security, Dublin, Ireland, 25–28 August 2020; pp. 1–10. [Google Scholar]
- Alani, M.M. BotStop: Packet-based efficient and explainable IoT botnet detection using machine learning. Comput. Commun. 2022, 193, 53–62. [Google Scholar] [CrossRef]
- Kumar, A.; Shridhar, M.; Swaminathan, S.; Lim, T.J. Machine learning-based early detection of IoT botnets using network-edge traffic. Comput. Secur. 2022, 117, 102693. [Google Scholar] [CrossRef]
- Maurya, S.; Kumar, S.; Garg, U.; Kumar, M. An efficient framework for detection and classification of iot botnet traffic. ECS Sens. Plus 2022, 1, 026401. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Ngo, Q.D.; Nguyen, H.T.; Nguyen, G.L. An advanced computing approach for IoT-botnet detection in industrial Internet of Things. IEEE Trans. Ind. Inform. 2022, 18, 8298–8306. [Google Scholar] [CrossRef]
- Hussain, F.; Abbas, S.G.; Pires, I.M.; Tanveer, S.; Fayyaz, U.U.; Garcia, N.M.; Shah, G.A.; Shahzad, F. A Two-Fold Machine Learning Approach to Prevent and Detect IoT Botnet Attacks. IEEE Access 2021, 9, 163412–163430. [Google Scholar] [CrossRef]
- Desai, M.G.; Shi, Y.; Suo, K. A Hybrid Approach for IoT Botnet Attack Detection. In Proceedings of the 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 27–30 October 2021; pp. 590–592. [Google Scholar] [CrossRef]
- Meidan, Y.; Bohadana, M.; Mathov, Y.; Mirsky, Y.; Breitenbacher, D.; Shabtai, A.; Elovici, Y. N-BaIoT: Network-based Detection of IoT Botnet Attacks Using Deep Autoencoders. IEEE Pervasive Comput. 2018, 17, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.T.; Ngo, Q.D.; Le, V.H. A novel graph-based approach for IoT botnet detection. Int. J. Inf. Secur. 2020, 19, 567–577. [Google Scholar] [CrossRef]
- Dange, S.; Chatterjee, M. IoT Botnet: The Largest Threat to the IoT Network. In Advances in Intelligent Systems and Computing; Jain, L., Tsihrintzis, G., Balas, V., Sharma, D., Eds.; Data Communication and Networks; Springer: Singapore, 2020; Volume 1049. [Google Scholar] [CrossRef]
- Le, H.-V.; Ngo, Q.-D. V-sandbox for dynamic analysis IoT botnet. IEEE Access 2020, 8, 145768–145786. [Google Scholar] [CrossRef]
- Idriss, H.K. Mirai Botnet in Lebanon. In Proceedings of the 2020 8th International Symposium on Digital Forensics and Security (ISDFS), Beirut, Lebanon, 1–2 June 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Shodan. Shodan Search Engine. 2022. Available online: https://www.shodan.io/ (accessed on 10 October 2022).
- Gallopeni, G.; Rodrigues, B.; Franco, M.; Stiller, B. A Practical Analysis on Mirai Botnet Traffic. In Proceedings of the 2020 IFIP Networking Conference (Networking), Paris, France, 22–26 June 2020; pp. 667–668. [Google Scholar]
- Schiller, E.; Aidoo, A.; Fuhrer, J.; Stahl, J.; Ziörjen, M.; Stiller, B. Landscape of IoT security. Comput. Sci. Rev. 2022, 44, 100467. [Google Scholar] [CrossRef]
- Kasat, K.; Rani, D.L.; Khan, B.; Ashok, J.; Kirubakaran, M.K.; Malathi, P. A novel security framework for healthcare data obtained by IOT sensors. Meas. Sens. 2022, 24, 100535. [Google Scholar] [CrossRef]
- Tiwari, R.; Sharma, H.K.; Upadhyay, S.; Sachan, S.; Sharma, A. Automated Parking System-Cloud and IoT based. Int. J. Eng. Adv. Technol. 2019, 8, 116–123. [Google Scholar]
- Hu, Z.; Gnatyuk, S.; Okhrimenko, T.; Tynymbayev, S.; Iavich, M. High-Speed and Secure PRNG for Cryptographic Applications. Int. J. Comput. Netw. Inf. Secur. 2020, 12, 1–10. [Google Scholar] [CrossRef]
- Hu, Z.; Khokhlachova, Y.; Sydorenko, V.; Opirskyy, I. Method for optimization of information security systems behavior under conditions of influences. Int. J. Intell. Syst. Appl. 2017, 9, 46. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Begain, K.; Khan, M.; Alothman, B.; Joumaa, C.; Alrashed, E. A DDoS Detection and Prevention System for IoT Devices and Its Application to Smart Home Environment. Appl. Sci. 2022, 12, 11853. https://doi.org/10.3390/app122211853
Al-Begain K, Khan M, Alothman B, Joumaa C, Alrashed E. A DDoS Detection and Prevention System for IoT Devices and Its Application to Smart Home Environment. Applied Sciences. 2022; 12(22):11853. https://doi.org/10.3390/app122211853
Chicago/Turabian StyleAl-Begain, Khalid, Murad Khan, Basil Alothman, Chibli Joumaa, and Ebrahim Alrashed. 2022. "A DDoS Detection and Prevention System for IoT Devices and Its Application to Smart Home Environment" Applied Sciences 12, no. 22: 11853. https://doi.org/10.3390/app122211853
APA StyleAl-Begain, K., Khan, M., Alothman, B., Joumaa, C., & Alrashed, E. (2022). A DDoS Detection and Prevention System for IoT Devices and Its Application to Smart Home Environment. Applied Sciences, 12(22), 11853. https://doi.org/10.3390/app122211853