In Vitro Study Comparing Retention of Custom Post and Cores Fabricated Using Conventional, CAD/CAM Milling and 3D-Printing Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Specimen Preparation
2.2.1. Mounting Teeth in Acrylic-Resin Blocks
2.2.2. Root-Canal Preparation and Obturation
2.2.3. Post-Space Preparation
2.2.4. Post-and-Core Fabrication
2.2.5. Surface Treatment of Post and Core
2.2.6. Post-and-Core Cementation
2.3. Placing Specimens on the Measuring Machine (Instron Testing Machine)
2.4. Scanning Electron Microscopy (SEM) Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
- Thermocycling was used for a short period. Further studies with longer thermocycling periods should be conducted;
- In the current study, only one type of luting cement was used. Additional studies using different types of cements should be performed to assess the effect of the type of cement on the retention of these post and cores;
- The effects of saliva and temperature changes in the oral cavity were not replicated in this study. The simulated clinical situations might have affected the results; hence, further studies that simulate the oral environment are recommended.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Glossary of Prosthodontic Terms: Ninth Edition. J. Prosthet. Dent. 2017, 117, e1–e105. [CrossRef] [Green Version]
- Raedel, M.; Fiedler, C.; Jacoby, S.; Boeing, K.W. Survival of teeth treated with cast post and cores: A retrospective analysis over an observation period of up to 19.5 years. J. Prosthet. Dent. 2015, 114, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Goto, Y.; Nicholls, J.I.; Phillips, K.M.; Junge, T. Fatigue resistance of endodontically treated teeth restored with three dowel-and-core systems. J. Prosthet. Dent. 2005, 93, 45–50. [Google Scholar] [CrossRef]
- Schillingburg, H.T.; Hobo, S.; Whitsett, L.D.; Jacobi, R.; Brackett, S.E. Fundamentals of Fixed Prosthodontics, 3rd ed.; Quintessence Publishing: Chicago, IL, USA, 1997; p. 40. [Google Scholar]
- Fernandes, A.S.; Shetty, S.; Coutinho, I. Factors determining post selection: A literature review. J. Prosthet. Dent. 2003, 90, 556–562. [Google Scholar] [CrossRef]
- Bergman, B.; Lundquist, P.; Sjögren, U. Restorative and endodontic results after treatment with cast posts and cores. J. Prosthet. Dent. 1989, 61, 10–15. [Google Scholar] [CrossRef]
- Creugers, N.H.; Mentink, A.G.; Käyser, A.F. An analysis of durability data on post and core restorations. J. Dent. 1993, 21, 281–284. [Google Scholar] [CrossRef]
- Pontius, O.; Hutter, J.W. Survival rate and fracture strength of incisors restored with different post and core systems and endodontically treated incisors without coronoradicular reinforcement. J. Endod. 2002, 28, 710–715. [Google Scholar] [CrossRef]
- Venkataraman, K.J.; Thanapathi, S.; Balasubramanian, S.; Gandhi, S.A.; Sarojinikutty, A.C. Fracture Resistance of Titanium, Chrome-Cobalt, and Gold Alloy as Post and Core Materials: A Comparative Evaluation. J. Pharm. Bioallied. Sci. 2020, 12 (Suppl. S1), S583–S588. [Google Scholar] [CrossRef] [PubMed]
- Jung, R.E.; Kalkstein, O.; Sailer, I.; Roos, M.; Hämmerle, C.H. A comparison of composite post buildups and cast gold post-and-core buildups for the restoration of nonvital teeth after 5 to 10 years. Int. J. Prosthodont. 2007, 20, 63–69. [Google Scholar]
- Al-Qarni, F.D. Customized Post and Cores Fabricated with CAD/CAM Technology: A Literature Review. Int. J. Gen. Med. 2022, 15, 4771–4779. [Google Scholar] [CrossRef] [PubMed]
- Piangsuk, T.; Dawson, D.V.; El-Kerdani, T.; Lindquist, T.J. The Accuracy of Post and Core Fabricated with Digital Technology. J. Prosthodont. 2022. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Khiavi, H.A.; Habibzadeh, S.; Safaeian, S.; Eftekhar, M. Fracture Strength of Endodontically treated Maxillary Central Incisors restored with Nickel Chromium and Nonprecious Gold Alloy Casting Post and Cores. J. Contemp. Dent. Pract. 2018, 19, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Kanduti, D.; Korat, L.; Kosec, T.; Legat, A.; Ovsenik, M.; Kopač, I. Comparison between accuracy of posts fabricated using a digital CAD/CAM technique and a conventional direct technique. Int. J. Prosthodont. 2021, 34, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Libonati, A.; Di Taranto, V.; Gallusi, G.; Montemurro, E.; Campanella, V. CAD/CAM customized glass fiber post and core with digital intraoral impression: A case report. Clin. Cosmet. Investig. Dent. 2020, 12, 17–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.H. Fabricating a custom zirconia post-and-core without a post-and-core pattern or a scan post. J. Prosthet. Dent. 2018, 120, 186–189. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.; Feng, C.; Zhu, X.; Liu, B.; Deng, T.; Gao, Y.; Li, Y.; Ke, J. Fracture behaviors of maxillary central incisors with flared root canals restored with CAD/CAM integrated glass fiber post-and-core. Dent. Mater. J. 2019, 38, 114–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balkenhol, M.; Wöstmann, B.; Rein, C.; Ferger, P. Survival time of cast post and cores: A 10-year retrospective study. J. Dent. 2007, 35, 50–58. [Google Scholar] [CrossRef]
- Heydecke, G.; Butzm, F.; Hussein, A.; Strub, J.R. Fracture strength after dynamic loading of endodontically treated teeth restored with different post-and-core systems. J. Prosthet. Dent. 2002, 87, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Awad, M.A.; Marghalani, T.Y. Fabrication of a custom-made ceramic post and core using CAD-CAM technology. J. Prosthet. Dent. 2007, 98, 161–162. [Google Scholar] [CrossRef]
- Lee, J.H.; Sohn, D.S.; Lee, C.H. Fabricating a fiber-reinforced post and zirconia core with CAD/CAM technology. J. Prosthet. Dent. 2014, 112, 683–685. [Google Scholar] [CrossRef] [PubMed]
- Baba, N.Z.; Golden, G.; Goodacre, C.J. Nonmetallic prefabricated dowels: A review of compositions, properties, laboratory, and clinical test results. J. Prosthodont. 2009, 18, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Ozkurt, Z.; Işeri, U.; Kazazoğlu, E. Zirconia ceramic post systems: A literature review and a case report. Dent. Mater. J. 2010, 29, 233–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massa, F.; Dias, C.; Blos, C.E. Resistance to fracture of mandibular premolars restored using post and-core systems. Quintessence Int. 2010, 41, 49–57. [Google Scholar] [PubMed]
- Ayad, M.F.; Bahannan, S.A.; Rosenstiel, S.F. Influence of Irrigant, Dowel Type, and RootReinforcing Material on Fracture Resistance of Thin-Walled Endodontically Treated Teeth. J. Prosthodont. 2011, 20, 180–189. [Google Scholar] [CrossRef]
- Alhajj, M.N.; Qi, C.H.; Sayed, M.E.; Johari, Y.; Ariffin, Z. Fracture Resistance of Titanium and Fiber Dental Posts: A Systematic Review and Meta-Analysis. J. Prosthodont. 2022, 31, 374–384. [Google Scholar] [CrossRef]
- Ranjkesh, B.; Leo, M.; Vafaei, A.; Lovschall, H. Pull-Out Bond Strength of Titanium Post Cemented with Novel Fast-Setting Calcium Silicate Cement. Eur. Endod. J. 2021, 6, 314–318. [Google Scholar] [CrossRef] [PubMed]
- International Standard 28399; Dentistry—Products for External Tooth Bleaching. International Organization for Standardization: Geneva, Switzerland, 2011.
- Rho, J.Y.; Ashman, R.B.; Turner, C.H. Young’s modulus of trabecular and cortical bone material: Ultrasonic and microtensile measurements. J. Biomech. 1993, 26, 111–119. [Google Scholar] [CrossRef]
- Khaledi, A.A.; Sheykhian, S.; Khodaei, A. Evaluation of Retention of two Different Cast Post-Core Systems and Fracture Resistance of the Restored Teeth. J. Dent. 2015, 16, 121–128. [Google Scholar]
- Sorensen, J.A.; Engelman, M.J. Ferrule design and fracture resistance of endodontically treated teeth. J. Prosthet. Dent. 1990, 63, 529–536. [Google Scholar] [CrossRef]
- Eissman, H.F.; Radke, R.A. Postendodontic restoration. In Pathways of the Pulp, 4th ed.; Cohen, S., Burns, R.C., Eds.; Mosby: St. Louis, CV, USA, 1987; pp. 640–643. [Google Scholar]
- Bakirtzoglou, E.; Kamalakidis, S.N.; Pissiotis, A.L.; Michalakis, K. In vitro assessment of retention and resistance failure loads of complete coverage restorations made for anterior maxillary teeth restored with two different cast post and core designs. J. Clin. Exp. Dent. 2019, 11, e225–e230. [Google Scholar] [CrossRef]
- De-Deus, G.; Belladonna, F.G.; Silva, E.J.N.L.; Souza, E.M.; Carvalhal, J.C.A.; Perez, R.; Lopes, R.T.; Versiani, M.A. Micro-CT assessment of dentinal micro-cracks after root canal filling procedures. Int. Endod. J. 2017, 50, 895–901. [Google Scholar] [CrossRef]
- Sorensen, J.A.; Martinoff, J.T. Clinically significant factors in dowel design. J. Prosthet. Dent. 1984, 52, 28–35. [Google Scholar] [CrossRef]
- Goodacre, C.J.; Spolnick, K.J. The prosthodontic management of endodontically treated teeth: A literature review. Part II. Maintaining the apical seal. J. Prosthod. 1995, 4, 51–53. [Google Scholar] [CrossRef]
- Morgano, S.M. Restoration of pulpless teeth: Application of traditional principles in present and future contexts. J. Prosthet. Dent. 1996, 75, 375–380. [Google Scholar] [CrossRef]
- Mattison, G.D.; Delivanis, P.D.; Thacker, R.W., Jr.; Hassell, K.J. Effect of post preparation on the apical seal. J. Prosthet. Dent. 1984, 51, 785–789. [Google Scholar] [CrossRef]
- Sreedevi, S.; Sanjeev, R.; Raghavan, R.; Abraham, A.; Rajamani, T.; Govind, G.K. An In Vitro Study on the Effects of Post-Core Design and Ferrule on the Fracture Resistance of Endodontically Treated Maxillary Central Incisors. J. Int. Oral Health 2015, 7, 37–41. [Google Scholar] [PubMed]
- Blatz, M.B.; Chiche, G.; Holst, S.; Sadan, A. Influence of surface treatment and simulated aging on bond strengths of luting agents to zirconia. Quintessence Int. 2007, 38, 745–753. [Google Scholar]
- Amaral, F.L.; Colucci, V.; Palma-Dibb, R.G.; Corona, S.A. Assessment of in vitro methods used to promote adhesive interface degradation: A critical review. J. Esthet. Restor. Dent. 2007, 19, 340–353. [Google Scholar] [CrossRef]
- Stegaroiu, R.; Yamada, H.; Kusakari, H.; Miyakawa, O. Retention and failure mode after cyclic loading in two post and core systems. J. Prosthet. Dent. 1996, 75, 506–511. [Google Scholar] [CrossRef]
- Ahmad, M.; Tarmeze, A.; Abdul Rasib, A. Capability of 3D Printing Technology in Producing Molar Teeth Prototype. Int. J. Eng. Appl. 2020, 8, 64–70. [Google Scholar] [CrossRef]
- Hudis, S.I.; Goldstein, G.R. Restoration of endodontically treated teeth: A review of the literature. J. Prosthet. Dent. 1986, 55, 33–38. [Google Scholar] [CrossRef]
- Bolhuis, H.P.B.; De Gee, A.J.; Feilzer, A.J.; Davidson, C.L. Fracture strength of different core build-up designs. Am. J. Dent. 2001, 14, 286–290. [Google Scholar]
- Liu, W.; Qing, H.; Pei, X.; Wang, J. Internal adaptation of cobalt-chromium posts fabricated by selective laser melting technology. J. Prosthet. Dent. 2019, 121, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Maya, A.; Millsten, P.; Freeman, Y. Determining post-core retention of smooth surface metal, non-metal posts. J. Dent. Res. 1998, 77, 160. [Google Scholar]
- Cohen, B.I.; Pagnillo, M.K.; Newman, I.; Musikant, B.L.; Deutsch, A.S. Retention of three endodontic posts cemented with five dental cements. J. Prosthet. Dent. 1998, 79, 520–525. [Google Scholar] [CrossRef]
- Liberman, R.; Ben-Amar, A.; Urstein, M.; Gontar, G.; Fitzig, S. Conditioning of root canals prior to dowel cementation with composite luting cement and two dentine adhesive systems. J. Oral Rehabil. 1989, 16, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Chapman, K.W.; Worley, J.L.; von Fraunhofer, J.A. Effect of bonding agents on retention of posts. Gen. Dent. 1985, 33, 128–130. [Google Scholar] [PubMed]
- Fernandes, V.; Silva, A.S.; Carvalho, O.; Henriques, B.; Silva, F.S.; Özcan, M.; Souza, J.C.M. The resin-matrix cement layer thickness resultant from the intracanal fitting of teeth root canal posts: An integrative review. Clin. Oral Investig. 2021, 25, 5595–5612. [Google Scholar] [CrossRef] [PubMed]
- Penelas, A.G.; Piedade, V.M.; Borges, A.C.; Poskus, L.T.; da Silva, E.M.; Guimarães, J.G. Can cement film thickness influence bond strength and fracture resistance of fiber reinforced composite posts? Clin. Oral Investig. 2016, 20, 849–855. [Google Scholar] [CrossRef]
- Gomes, G.M.; Rezende, E.C.; Gomes, O.M.; Gomes, J.C.; Loguercio, A.D.; Reis, A. Influence of the resin cement thickness on bond strength and gap formation of fiber posts bonded to root dentin. J. Adhes. Dent. 2014, 16, 71–88. [Google Scholar]
- Amin, R.A.; Mandour, M.H.; Abd El-Ghany, O.S. Fracture strength and nanoleakage of weakened roots reconstructed using relined glass fiber-reinforced dowels combined with a novel prefabricated core system. J. Prosthodont. 2014, 23, 484–494. [Google Scholar] [CrossRef] [PubMed]
- Tamac, E.; Toksavul, S.; Toman, M. Clinical marginal and internal adaptation of CAD/CAM milling, laser sintering, and cast metal ceramic crowns. J. Prosthet. Dent. 2014, 112, 909–913. [Google Scholar] [CrossRef] [PubMed]
- Scotti, N.; Forniglia, A.; Bergantin, E.; Paolino, D.S.; Pasqualini, D.; Berutti, E. Fibre post adaptation and bond strength in oval canals. Int. Endod. J. 2014, 47, 366–372. [Google Scholar] [CrossRef] [PubMed]
Group | Material Trade Name | Manufacturer | Main Composition | Manufacturing Technique Used |
---|---|---|---|---|
Group 1 | NPG | Aalba Dent, Inc., Fulton Drive, Fairfield, CA, USA | Cu, 80.7%; Al, 7.8%; Ni, 4.3% | Casting (lost-wax technique) |
Group 2 | KERA Ti-5 Disc | Eisenbacher Dentalwaren ED GmbH Dr.-Konrad-Wiegand-Straße, Wörth am Main, Germany | Ti, 89%; Al, 6.4%; V, 4.1% | Milling |
Group 3 | Ti-6Al-4V | Renovis Surgical, West Lugonia Ave, Austin, TX, USA | Ti, 89%; Al, 6.4%; V, 4.1% | 3D printing |
Group 4 | BruxZir Full-Strength Zirconia | BruxZir; Glidewell Laboratory Inc., Newport Beach, CA, USA | Monolithic zirconia (zirconium oxide) | Milling |
Characteristic | Group 1 | Group 2 | Group 3 | Group 4 | p-Value | Differences in Clinical Factors by the Group (Mean Difference) (95% CI) |
---|---|---|---|---|---|---|
Mean (95% CI) | Mean (95% CI) | Mean (95% CI) | Mean (95% CI) | |||
Total Time—Average (Seconds) | 130.3 (112.6, 148.1) | 180.4 (147.7, 213.0) | 274.0 (217.3, 330.6) | 109.6 (84.0, 135.2) | <0.001 | Total time Average * Group 1 vs. Group 2: 20.8 (−19.4, 61.0) Group 1 vs. Group 3: −143.6 (−222.2, −65.1) # Group 1 vs. Group 4: −50.0 (−98.3, 1.7) # Group 2 vs. Group 3: −164.4 (−245.8, −83.1) # Group 2 vs. Group 4: −70.8 (−124.2, −17.4) # Group 3 vs. Group 4: 93.6 (8.8, 178.5) # |
Total Time—Max. (Seconds) | 261.6 (226.1, 297.1) | 360.7 (295.4, 426.0) | 547.9 (434.6, 661.1) | 219.2 (168.0, 270.3) | <0.001 | Total Time Max. * Group 1 vs. Group 2: 42.5 (−37.9, 122.8) Group 1 vs. Group 3: −286.2 (−443.3, −129.2) # Group 1 vs. Group 4: −99.1 (−195.8, −2.4) # Group 2 vs. Group 3: −328.7 (−491.4, −166.0) # Group 2 vs. Group 4: −141.6 (−248.3, −34.8) # Group 3 vs. Group 4: 187.1 (17.4, 356.8) # |
Average Load (N) | 131.1 (118.2, 144.0) | 150.9 (133.5, 168.2) | 156.5 (142.8, 170.1) | 96.9 (83.4, 110.5) | <0.001 | Average Load ** Group 1 vs. Group 2: −5.6 (−31.2, 20.1) Group 1 vs. Group 3: 19.7 (−5.9, 45.4) Group 1 vs. Group 4: 53.9 (28.3, 79.6) Group 2 vs. Group 3: 25.3 (−0.30, 51.0) Group 2 vs. Group 4: 59.5 (33.9, 85.2) # Group 3 vs. Group 4: 34.2 (8.5, 59.8) # |
Max. Load (N) | 295.9 (261.0, 330.8) | 302.7 (273.1, 332.3) | 361.5 (309.8, 413.2) | 248.1 (202.9, 293.3) | <0.002 | Max. Load ** Group 1 vs. Group 2: −6.8 (−65.6, 52.0) Group 1 vs. Group 3: −65.6 (−146.2, 15.0) Group 1 vs. Group 4: 47.8 (−25.8, 121.3) Group 2 vs. Group 3: −58.8 (−132.0, 14.5) Group 2 vs. Group 4: 54.6 (−18.6, 127.8) Group 3 vs. Group 4: 113.4 (40.1, 132.0) # |
Group 1 | Group 2 | Group 3 | Group 4 | |
---|---|---|---|---|
Median (min–max) | Median (min–max) | Median (min–max) | Median (min–max) | |
Displacement (mm) | 0.2 (0.1–1.0) | 0.5 (0.1–1.0) | 0.2 (0.1–0.8) | 0.1 (0.1–1.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqarni, H.; AlHelal, A.A.; Jekki, R.; Kattadiyil, M.T.; Sayed, M.E.; Jain, S.; Vahdati, S.A.; Dehom, S. In Vitro Study Comparing Retention of Custom Post and Cores Fabricated Using Conventional, CAD/CAM Milling and 3D-Printing Techniques. Appl. Sci. 2022, 12, 11896. https://doi.org/10.3390/app122311896
Alqarni H, AlHelal AA, Jekki R, Kattadiyil MT, Sayed ME, Jain S, Vahdati SA, Dehom S. In Vitro Study Comparing Retention of Custom Post and Cores Fabricated Using Conventional, CAD/CAM Milling and 3D-Printing Techniques. Applied Sciences. 2022; 12(23):11896. https://doi.org/10.3390/app122311896
Chicago/Turabian StyleAlqarni, Hatem, Abdulaziz A. AlHelal, Rami Jekki, Mathew T. Kattadiyil, Mohammed E. Sayed, Saurabh Jain, Seyed Aliakbar Vahdati, and Salem Dehom. 2022. "In Vitro Study Comparing Retention of Custom Post and Cores Fabricated Using Conventional, CAD/CAM Milling and 3D-Printing Techniques" Applied Sciences 12, no. 23: 11896. https://doi.org/10.3390/app122311896
APA StyleAlqarni, H., AlHelal, A. A., Jekki, R., Kattadiyil, M. T., Sayed, M. E., Jain, S., Vahdati, S. A., & Dehom, S. (2022). In Vitro Study Comparing Retention of Custom Post and Cores Fabricated Using Conventional, CAD/CAM Milling and 3D-Printing Techniques. Applied Sciences, 12(23), 11896. https://doi.org/10.3390/app122311896