Embedded One-Dimensional Orifice Elements for Slosh Load Calculations in Volume-Of-Fluid CFD
Abstract
:1. Introduction
2. Materials and Methods
2.1. Orifice Flow Losses
2.1.1. Viscous Losses
2.1.2. Flow Contraction and Expansion Losses
2.1.3. Two-Phase Flow Losses
2.1.4. Total Two-Phase Losses within Orifices
2.2. Fluid Governing Equations
2.2.1. Conservation Equations in a Non-Inertial Reference Frame
2.2.2. Orifice Flow Loss Model
2.3. Numerical Method
2.3.1. Brief Overview of Vertex-Centered VOF Method
2.3.2. Spatial Discretization of Diffusive Term
2.3.3. Numerical Calculation of Orifice Loss Coefficient
2.3.4. CICSAM Correction for Orifice Elements
3. Results
3.1. VOF Advection Test Case
3.2. Violent Slosh Test Case Results
3.2.1. Full-Resolution Simulation Results
3.2.2. Results Using 1D Orifice Element Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Golla, S.T.; Venkatesham, B. Experimental study on the effect of centrally positioned vertical baffles on sloshing noise in a rectangular tank. Appl. Acoust. 2021, 176, 107890. [Google Scholar] [CrossRef]
- Zheng, S.; Gao, F.; Zhang, Z.; Liu, H.; Li, B. Topology optimization on fuel tank rib structures for fuel sloshing suppression based on hybrid fluid–solid SPH simulation. Thin-Walled Struct. 2021, 165, 107938. [Google Scholar] [CrossRef]
- Gambioli, F.; Malan, A. Fuel loads in large civil airplanes. In Proceedings of the International Forum on Aeroelasticity and Structural Dynamics, Como, Italy, 25–28 June 2017. [Google Scholar]
- Gambioli, F.; Usach, R.; Kirby, J.; Wilson, T.; Behruzi, P. Experimental evaluation of fuel sloshing effects on wing dynamics. In Proceedings of the International Forum on Aeroelasticity and Structural Dynamics, Savannah, GA, USA, 9–13 June 2019. [Google Scholar]
- Barrows, T.M.; Orr, J.S. Chapter 3—Slosh modeling. In Dynamics and Simulation of Flexible Rockets; Barrows, T.M., Orr, J.S., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 53–75. [Google Scholar] [CrossRef]
- Gerrits, J.; Veldman, A. Dynamics of liquid-filled spacecraft. J. Eng. Math. 2003, 45, 24–38. [Google Scholar] [CrossRef]
- Karimi, M.; Brosset, L.; Ghidaglia, J.M.; Kaminski, M. Effect of ullage gas on sloshing, Part II: Local effects of gas–liquid density ratio. Eur. J. Mech.-B/Fluids 2016, 57, 82–100. [Google Scholar] [CrossRef]
- Ancellin, M.; Brosset, L.; Ghidaglia, J.M. Numerical study of phase change influence on wave impact loads in LNG tanks on floating structures. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, American Society of Mechanical Engineers, Madrid, Spain, 17–22 June 2018; Volume 51302, p. V009T13A026. [Google Scholar]
- He, L.; Zhao, A.; Li, Y.; Zhou, B.; Liang, W. Effect of processing method on the spring-in of aircraft ribs. Compos. Commun. 2021, 25, 100688. [Google Scholar] [CrossRef]
- Aly, A.M.; Nguyen, M.T.; Lee, S.W. Numerical Analysis of Liquid Sloshing Using the Incompressible Smoothed Particle Hydrodynamics Method. Adv. Mech. Eng. 2015, 7, 765741. [Google Scholar] [CrossRef]
- Chen, B.F. Time-independent finite difference analysis of fully non-linear and viscous fluid sloshing in a rectangular tank. J. Comput. Phys. 2005, 209, 47–81. [Google Scholar] [CrossRef]
- Wu, G.X.; Ma, Q.W.; Taylor, R.E. Numerical simulation of sloshing waves in a 3D tank based on a finite element method. Appl. Ocean. Res. 1998, 20, 337–355. [Google Scholar] [CrossRef]
- Faltinsen, O.M. A numerical nonlinear method of sloshing in tanks with two dimesnional flow. J. Ship Res. 1978, 22, 193–202. [Google Scholar] [CrossRef]
- Versteeg, H.; Malalasekera, W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method; Wiley: New York, NY, USA, 1995. [Google Scholar]
- Hirt, C.; Nichols, B. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Kandasamy, T.; Rakheja, S.; Ahmed, A.K.W. An Analysis of Baffles Designs for Limiting Fluid Slosh in Partly Filled Tank Trucks. Open Transp. J. 2010, 4. [Google Scholar] [CrossRef]
- Thirunavukkarasu, B.; Rajagopal, T.K.R. Numerical investigation of sloshing in tank with horivert baffles under resonant excitation using CFD code. Thin-Walled Struct. 2021, 161, 107517. [Google Scholar] [CrossRef]
- Santhanam, V. Slosh Damping with Floating Magnetoactive Micro-Baffles. Master’s Thesis, Embry-Riddle Aeronautical University, Daytona Beach, FL, USA, 2014. [Google Scholar]
- Oxtoby, O.F.; Malan, A.; Heyns, J.A. A computationally efficient 3D finite-volume scheme for violent liquid–gas sloshing. Int. J. Numer. Methods Fluids 2015, 79, 306–321. [Google Scholar] [CrossRef]
- Demirel, E.; Aral, M.M. Liquid Sloshing Damping in an Accelerated Tank Using a Novel Slot-Baffle Design. Water 2018, 10, 1565. [Google Scholar] [CrossRef] [Green Version]
- Mubarok, M.H.; Zarrouk, S.J.; Cater, J.E. Two-phase flow measurement of geothermal fluid using orifice plate: Field testing and CFD validation. Renew. Energy 2019, 134, 927–946. [Google Scholar] [CrossRef]
- Mubarok, M.H.; Cater, J.E.; Zarrouk, S.J. Comparative CFD modelling of pressure differential flow meters for measuring two-phase geothermal fluid flow. Geothermics 2020, 86, 101801. [Google Scholar] [CrossRef]
- Courant, R.; Friedrichs, K.; Lewy, H. On the Partial Difference Equations of Mathematical Physics; Institute of Mathematical Sciences New York University: New York, NY, USA, 1956. (In German) [Google Scholar]
- Leonard, B.P. Note on the von Neumann stability of explicit one-dimensional advection schemes. Comput. Methods Appl. Mech. Eng. 1994, 118, 29–46. [Google Scholar] [CrossRef]
- Ozhan, C.; Fuster, D.; Da Costa, P. Multi-scale flow simulation of automotive catalytic converters. Chem. Eng. Sci. 2014, 116, 161–171. [Google Scholar] [CrossRef]
- Porter, S.; Saul, J.; Aleksandrova, S.; Medina, H.; Benjamin, S. Hybrid flow modelling approach applied to automotive catalysts. Appl. Math. Model. 2016, 40, 8435–8445. [Google Scholar] [CrossRef]
- Jordaan, H.; Stephan Heyns, P.; Hoseinzadeh, S. Numerical Development of a Coupled One-Dimensional/Three-Dimensional Computational Fluid Dynamics Method for Thermal Analysis with Flow Maldistribution. J. Therm. Sci. Eng. Appl. 2021, 13, 041017. [Google Scholar] [CrossRef]
- Heyns, J.A.; Malan, A.G.; Harms, T.M.; Oxtoby, O.F. A weakly compressible free-surface flow solver for liquid–gas systems using the volume-of-fluid approach. J. Comput. Phys. 2013, 240, 145–157. [Google Scholar] [CrossRef]
- Suliman, R.; Oxtoby, O.F.; Malan, A.; Kok, S. An enhanced finite volume method to model 2D linear elastic structures. Appl. Math. Model. 2014, 38, 2265–2279. [Google Scholar] [CrossRef]
- Wright, M.D.; Gambioli, F.; Malan, A.G. CFD Based Non-Dimensional Characterization of Energy Dissipation Due to Verticle Slosh. Appl. Sci. 2021, 11, 10401. [Google Scholar] [CrossRef]
- Archer, W. Experimental determination of loss of head due to sudden enlargement in circular pipes. Trans. Am. Soc. Civ. Eng. 1913, 76, 999–1026. [Google Scholar] [CrossRef]
- Spaur, P.J. Investigation of Discharge Coefficients for Irregular Orifices. Master’s Thesis, West Virginia University, Morgantown, WV, USA, 2011. [Google Scholar]
- Rennels, D.C.; Hudson, H.M. Pipe Flow—A Practical and Comprehensive Guide; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar] [CrossRef]
- Kojasoy, G.; Landis, F.; Kwame-Mensah, P.; Chang, C. Two-phase pressure drop in multiple thick- and thin-orifice plates. Exp. Therm. Fluid Sci. 1997, 15, 347–358. [Google Scholar] [CrossRef]
- Chisolm, D. Two-Phase Flow in Pipelines and Heat Exchangers, 1st ed.; Longman Inc.: New York, NY, USA, 1983. [Google Scholar]
- Sadri, R.M. Channel Entrance Flow. Master’s Thesis, The University of Western Ontario, London, ON, Canada, 1997. [Google Scholar]
- White, F.M. Fluid Mechanics, 4th ed.; WCB/McGraw Hill: New York, NY, USA, 2011; pp. 325–710. [Google Scholar] [CrossRef] [Green Version]
- Avci, A.; Karagoz, I. A new explicit friction factor formula for laminar, transition and turbulent flows in smooth and rough pipes. Eur. J. Mech.-B/Fluids 2019, 78, 182–187. [Google Scholar] [CrossRef]
- Milne-Thompson, L.C.M. Theoretical Hydrodynamics, 3rd ed.; McMillan Co.: New York, NY, USA, 1957. [Google Scholar]
- Grose, R.D. Orifice Contraction Coefficient for Inviscid Incompressible Flow. J. Fluids Eng. 1985, 107, 36–43. [Google Scholar] [CrossRef]
- Belaud, G.; Cassan, L.; Baume, J.P. Calculation of Contraction Coefficient under Sluice Gates and Application to Discharge Measurement. J. Hydraul. Eng. 2019, 135, 1086–1091. [Google Scholar] [CrossRef] [Green Version]
- Wallis, G.B. One-Dimensional Two-Phase Flow, 1st ed.; McGraw-Hill, Inc.: New York, NY, USA, 1969. [Google Scholar]
- Roul, M.K.; Dash, S.K. Single-phase and two-phase flow through thin and thick orifices in horizontal pipes. J. Fluids Eng. Trans. ASME 2012, 134, 1–14. [Google Scholar] [CrossRef]
- Lewis, R.; Malan, A. Continuum thermodynamic modeling of drying capillary particulate materials via an edge-based algorithm. Comput. Methods Appl. Mech. Eng. 2005, 194, 2043–2057. [Google Scholar] [CrossRef]
- Tryggvason, G.; Scardovelli, R.; Zaleski, S. Direct Numerical Simulations of Gas–Liquid Multiphase Flows; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar] [CrossRef]
- Ubbink, O.; Issa, R.I. A Method for Capturing Sharp Fluid Interfaces on Arbitrary Meshes. J. Comput. Phys. 1999, 153, 26–50. [Google Scholar] [CrossRef] [Green Version]
- Oxtoby, O.F.; Malan, A.G. A matrix-free, implicit, incompressible fractional-step algorithm for fluid–structure interaction applications. J. Comput. Phys. 2012, 231, 5389–5405. [Google Scholar] [CrossRef]
- Gambioli, F.; Malan, A. Fuel loads in large civil airplanes. In Proceedings of the 4th International SPHERIC Workshop, Nantes, France, 26–29 May 2009; pp. 246–253. [Google Scholar]
B | ||
---|---|---|
No. of Orifice Elements | |||
---|---|---|---|
Top Orifice | Middle Orifice | Bottom Orifice | |
Mesh A | 3 | 7 | 8 |
Mesh B | 3 | 4 | 4 |
Mesh C | 3 | 3 | 3 |
Full Resolution | 1D Element Model | |||
---|---|---|---|---|
Mesh A | Mesh B | Mesh C | ||
No of Nodes | 3757 | 3458 | 3173 | 2263 |
Time Steps | 154,606 | 129,170 | 131,062 | 130,958 |
CPU Time | 67,786 s | 58,540 s | 46,892 s | 33,286 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botha, E.; Malan, L.C.; Malan, A.G. Embedded One-Dimensional Orifice Elements for Slosh Load Calculations in Volume-Of-Fluid CFD. Appl. Sci. 2022, 12, 11909. https://doi.org/10.3390/app122311909
Botha E, Malan LC, Malan AG. Embedded One-Dimensional Orifice Elements for Slosh Load Calculations in Volume-Of-Fluid CFD. Applied Sciences. 2022; 12(23):11909. https://doi.org/10.3390/app122311909
Chicago/Turabian StyleBotha, Elrich, Leon Cillie Malan, and Arnaud George Malan. 2022. "Embedded One-Dimensional Orifice Elements for Slosh Load Calculations in Volume-Of-Fluid CFD" Applied Sciences 12, no. 23: 11909. https://doi.org/10.3390/app122311909
APA StyleBotha, E., Malan, L. C., & Malan, A. G. (2022). Embedded One-Dimensional Orifice Elements for Slosh Load Calculations in Volume-Of-Fluid CFD. Applied Sciences, 12(23), 11909. https://doi.org/10.3390/app122311909