The Effect of Students, Computers, and Air Purifiers on Classroom Air Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Monitoring
3. Results
3.1. Campaign 1: Office and Lab
3.2. Campaign 2: Class (March)
3.3. Campaign 3: Class and Air Purifier (October)
4. Discussion
4.1. People’s Presence
4.2. Air Purifier
4.3. PCs’ Operation
4.4. Gaseous Air Pollutants
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krüger, E.L.; Zannin, P.H. Acoustic, thermal and luminous comfort in classrooms. Build. Environ. 2004, 39, 1055–1063. [Google Scholar] [CrossRef]
- Wyon, D.P. The effects of indoor air quality on performance and productivity. Indoor Air 2004, 14, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Loupa, G. Influence of Noise on Patient Recovery. Curr. Pollut. Rep. 2020, 6, 1–7. [Google Scholar] [CrossRef]
- Loupa, G.; Karali, D.; Rapsomanikis, S. Aerosol filtering efficiency of respiratory face masks used during the COVID-19 pandemic. medRxiv 2020. [Google Scholar] [CrossRef]
- Moghadam, T.T.; Ochoa Morales, C.E.; Lopez Zambrano, M.; Bruton, K.; O’Sullivan, D.T.J. The indoor air quality, ventilation and energy nexus in the COVID-19 context. In Proceedings of the CLIMA 2022 Conference, Rotterdam, The Netherlands, 22–25 May 2022. [Google Scholar] [CrossRef]
- Rivas, I.; Fussell, J.C.; Kelly, F.J.; Querol, X. Indoor sources of air pollutants. In Indoor Air Pollution; Book Series: Issues in Environmental Science and Technology; The Royal Society of Chemistry: London, UK, 2019; pp. 1–34. ISBN 978-1-78801-617-9. [Google Scholar] [CrossRef]
- Samet, J.M.; Marbury, M.C.; Spengler, J.D. Health effects and sources of indoor air pollution. Part I. Am. Rev. Respir. Dis. 1987, 136, 1486–1508. [Google Scholar] [CrossRef]
- Spengler, J.D.; Samet, J.M.; McCarthy, J.F. Indoor Air Quality Handbook; McGraw-Hill Companies Inc.: New York, NY, USA, 2001. [Google Scholar]
- Loupa, G.; Kioutsioukis, I.; Rapsomanikis, S. Indoor-Outdoor Atmospheric Particulate Matter Relationships in Naturally Ventilated Offices. Indoor Built Environ. 2007, 16, 63–69. [Google Scholar] [CrossRef]
- Sarbu, I.; Pacurar, C. Experimental and numerical research to assess indoor environment quality and schoolwork performance in university classrooms. Build. Environ. 2015, 93, 141–154. [Google Scholar] [CrossRef]
- Deng, S.; Lau, J. Seasonal variations of indoor air quality and thermal conditions and their correlations in 220 classrooms in the Midwestern United States. Build. Environ. 2019, 157, 79–88. [Google Scholar] [CrossRef]
- Kabirikopaei, A.; Lau, J.; Nord, J.; Bovaird, J. Identifying the K-12 classrooms’ indoor air quality factors that affect student academic performance. Sci. Total Environ. 2021, 786, 147498. [Google Scholar] [CrossRef]
- Seseña, S.; Rodríguez, A.M.; Palop, M.L. Indoor air quality analysis in naturally ventilated university training laboratories: A health risk assessment. Air Qual. Atmos. Health 2022, 15, 1817–1837. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Argunhan, Z.; Avci, A.S. Statistical Evaluation of Indoor Air Quality Parameters in Classrooms of a University. Adv. Meteorol. 2018, 2018, 4391579. [Google Scholar] [CrossRef]
- Erlandson, G.; Magzamen, S.; Carter, E.; Sharp, J.L.; Reynolds, S.J.; Schaeffer, J.W. Characterization of indoor air quality on a college campus: A pilot study. Int. J. Environ. Res. Public Health 2019, 16, 2721. [Google Scholar] [CrossRef] [Green Version]
- Szczepanik-Scislo, N.; Antonowicz, A.; Scislo, L. PIV measurement and CFD simulations of an air terminal device with a dynamically adapting geometry. SN Appl. Sci. 2019, 1, 370. [Google Scholar] [CrossRef] [Green Version]
- McLeod, R.S.; Mathew, M.; Salman, D.; Thomas, C.L.P. An Investigation of Indoor Air Quality in a Recently Refurbished Educational Building. Front. Built Environ. 2022, 7, 769761. [Google Scholar] [CrossRef]
- Choe, Y.; Shin, J.-S.; Park, J.; Kim, E.; Oh, N.; Min, K.; Kim, D.; Sung, K.; Cho, M.; Yang, W. Inadequacy of air purifier for indoor air quality improvement in classrooms without external ventilation. Build. Environ. 2022, 207, 108450. [Google Scholar] [CrossRef]
- Yang, A. The cost of clean air: A price analysis of air filtration technology. arXiv 2022, arXiv:2208.06041. [Google Scholar]
- Salis, L.C.R.; Abadie, M.; Wargocki, P.; Rode, C. Towards the definition of indicators for assessment of indoor air quality and energy performance in low-energy residential buildings. Energy Build. 2017, 152, 492–502. [Google Scholar] [CrossRef]
- Shrubsole, C.; Dimitroulopoulou, S.; Foxall, K.; Gadeberg, B.; Doutsi, A. IAQ guidelines for selected volatile organic compounds (VOCs) in the UK. Build. Environ. 2019, 165, 106382. [Google Scholar] [CrossRef]
- Satish, U.; Mendell, M.J.; Shekhar, K.; Hotchi, T.; Sullivan, D.; Streufert, S.; Fisk, W.J. Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environ. Health Perspect. 2012, 120, 1671–1677. [Google Scholar] [CrossRef] [PubMed]
- Lowther, S.D.; Dimitroulopoulou, S.; Foxall, K.; Shrubsole, C.; Cheek, E.; Gadeberg, B.; Sepai, O. Low Level Carbon Dioxide Indoors—A Pollution Indicator or a Pollutant? A Health-Based Perspective. Environments 2021, 8, 125. [Google Scholar] [CrossRef]
- Nico, M.A.; Liuzzi, S.; Stefanizzi, P. Evaluation of thermal comfort in university classrooms through objective approach and subjective preference analysis. Appl. Ergon. 2015, 48, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Toyinbo, O.; Shaughnessy, R.; Turunen, M.; Putus, T.; Metsämuuronen, J.; Kurnitski, J.; Haverinen-Shaughnessy, U. Building characteristics, indoor environmental quality, and mathematics achievement in Finnish elementary schools. Build. Environ. 2016, 104, 114–121. [Google Scholar] [CrossRef]
- Wolrd Health Organization. WHO Guidelines for Indoor Air Quality: Selected Pollutants; Wolrd Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Loupa, G.; Polyzou, C.; Zarogianni, A.M.; Ouzounis, K.; Rapsomanikis, S. Indoor and outdoor elemental mercury: A comparison of three different cases. Environ. Monit. Assess. 2017, 189, 72. [Google Scholar] [CrossRef]
- Loupa, G.; Kryona, Z.P.; Pantelidou, V.; Rapsomanikis, S. Are PM2.5 in the Atmosphere of a Small City a Threat for Health? Sustainability 2021, 13, 11329. [Google Scholar] [CrossRef]
- Qian, J.; Peccia, J.; Ferro, A.R. Walking-induced particle resuspension in indoor environments. Atmos. Environ. 2014, 89, 464–481. [Google Scholar] [CrossRef]
- Taheri, M.; Zolfaghari, S.A.; Hassanzadeh, H.; Salmanzadeh, M. Numerical investigation of the effects of fan-coil airflow direction on distribution and deposition of indoor pollutant particles. J. Build. Eng. 2021, 33, 101547. [Google Scholar] [CrossRef]
- Cichowicz, R.; Stelęgowski, A. Average hourly concentrations of air contaminants in selected urban, town, and rural sites. Arch. Environ. Contam. Toxicol. 2019, 77, 197–213. [Google Scholar] [CrossRef] [Green Version]
- You, S.; Wan, M.P. Experimental investigation and modelling of human-walking-induced particle resuspension. Indoor Built Environ. 2014, 24, 564–576. [Google Scholar] [CrossRef]
- Papakonstantis, I.G.; Hathway, E.A.; Brevis, W. An experimental study of the flow induced by the motion of a hinged door separating two rooms. Build. Environ. 2018, 131, 220–230. [Google Scholar] [CrossRef]
- Licina, D.; Tian, Y.; Nazaroff, W.W. Emission rates and the personal cloud effect associated with particle release from the perihuman environment. Indoor Air 2017, 27, 791–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammond, A.; Khalid, T.; Thornton, H.V.; Woodall, C.A.; Hay, A.D. Should homes and workplaces purchase portable air filters to reduce the transmission of SARS-CoV-2 and other respiratory infections? A systematic review. PLoS ONE 2021, 16, e0251049. [Google Scholar] [CrossRef] [PubMed]
- Bako-Biro, Z.; Wargocki, P.; Weschler, C.J.; Fanger, P.O. Effects of pollution from personal computers on perceived air quality, SBS symptoms and productivity in offices. Indoor Air 2004, 14, 178–187. [Google Scholar] [CrossRef] [PubMed]
Campaign 1: Office and Lab 16/11/2021–23/12/2021) | |||
Experiments | People presence | Running PCs | Number of experiment repetitions |
1 | Yes | No | 3 |
2 | No | Yes | 4 |
3 | Yes | Yes | 5 |
4 | No | No | 3 |
Campaign 2: Classroom (15/3/2022–22/3/2022) | |||
People presence | Opening windows and door | Number of experiment repetitions | |
1 | Yes | No | 4 |
2 | No | Yes | 5 |
3 | Yes | Yes | 3 |
4 | No | No | 3 |
Campaign 3: Classroom (11/10/2022–15/10/2022) | |||
People presence | Air purifier | Number of experiment repetitions | |
1 | Yes | No | 4 |
2 | No | Yes | 2 |
3 | Yes | Yes | 3 |
4 | No | No | 3 |
Office | Lab | Outdoors | ||||
---|---|---|---|---|---|---|
Variable | Mean | SD | Mean | SD | Mean | SD |
PM (μg m−3) | ||||||
PM1 | 8.56 | 0.54 | 4.85 | 0.94 | 3.33 | 0.08 |
PM2.5 | 10.34 | 0.91 | 5.57 | 1.42 | 5.00 | 0.19 |
PM4 | 15.54 | 1.78 | 7.12 | 3.63 | 8.53 | 0.86 |
PM7 | 20.93 | 2.22 | 8.54 | 7.91 | 13.25 | 1.47 |
PM10 | 22.90 | 2.43 | 9.13 | 11.30 | 16.48 | 1.68 |
TSP | 27.36 | 3.42 | 10.18 | 25.15 | 26.75 | 5.26 |
Gaseous pollutants | ||||||
TVOC (ppb) | 103.70 | 28.91 | 115.22 | 41.30 | 132.85 | 24.33 |
CO (ppb) | 387.78 | 100.27 | 377.30 | 242.96 | 428.42 | 106.13 |
CO2 (ppm) | 530.23 | 67.33 | 532.29 | 90.78 | 517.25 | 147.03 |
O3 (ppb) | 10.30 | 4.10 | 9.04 | 5.54 | 12.66 | 16.41 |
NO (ppb) | 9.07 | 3.41 | 8.34 | 5.43 | 12.15 | 7.67 |
NO2 (ppb) | 12.08 | 2.27 | 10.22 | 7.67 | 14.11 | 3.67 |
Microclimatic conditions | ||||||
AT (°C) | 19.04 | 1.33 | 19.27 | 2.32 | 15.70 | 1.10 |
RH (%) | 38.60 | 1.76 | 43.76 | 6.14 | 45.56 | 4.73 |
Campaign 2 | Campaign 3 (by Event *) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | S, DC, W cl, Pur C | S, DC, W cl, Pur op | S, DC, Wop, Pur C | O, DC, Wop, Pur C | ||||||
PM (μg m−3) | ||||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
PM1 | 11.31 | 5.81 | 7.35 | 0.98 | 10.62 | 4.01 | 8.11 | 3.08 | 5.40 | 1.27 |
PM2.5 | 14.32 | 7.52 | 14.26 | 3.18 | 16.50 | 4.65 | 12.57 | 3.52 | 7.69 | 1.81 |
PM4 | 20.35 | 13.31 | 45.31 | 14.66 | 42.41 | 11.67 | 32.41 | 7.54 | 16.19 | 4.61 |
PM7 | 25.18 | 19.83 | 95.67 | 33.25 | 85.38 | 26.58 | 68.51 | 18.95 | 29.44 | 10.24 |
PM10 | 27.03 | 23.05 | 119.32 | 44.00 | 108.94 | 36.80 | 88.26 | 28.33 | 35.66 | 13.88 |
TSP | 31.20 | 32.07 | 176.33 | 68.97 | 160.70 | 60.43 | 145.61 | 58.47 | 45.51 | 19.42 |
Gaseous pollutants | ||||||||||
TVOC (ppb) | 128.77 | 30.54 | 194.58 | 38.79 | 134.41 | 32.10 | 197.86 | 17.72 | 73.64 | 11.92 |
CO (ppb) | 495.62 | 192.88 | 672.92 | 487.49 | 705.33 | 351.93 | 360.57 | 36.99 | 119.79 | 32.60 |
CO2 (ppm) | 641.97 | 421.53 | 1273.92 | 554.04 | 2166.37 | 534.78 | 1559.86 | 178.67 | 684.64 | 190.85 |
O3 (ppb) | 8.23 | 16.66 | 28.33 | 22.50 | 18.15 | 13.31 | 25.67 | 12.70 | 27.30 | 10.67 |
Microclimatic conditions | ||||||||||
AT (°C) | 18.66 | 2.12 | 24.87 | 1.25 | 26.05 | 0.93 | 24.40 | 0.21 | 23.65 | 0.28 |
RH (%) | 41.13 | 9.32 | 46.00 | 5.45 | 49.67 | 5.11 | 43.44 | 0.66 | 32.86 | 2.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dabanlis, G.; Loupa, G.; Liakos, D.; Rapsomanikis, S. The Effect of Students, Computers, and Air Purifiers on Classroom Air Quality. Appl. Sci. 2022, 12, 11911. https://doi.org/10.3390/app122311911
Dabanlis G, Loupa G, Liakos D, Rapsomanikis S. The Effect of Students, Computers, and Air Purifiers on Classroom Air Quality. Applied Sciences. 2022; 12(23):11911. https://doi.org/10.3390/app122311911
Chicago/Turabian StyleDabanlis, Georgios, Glykeria Loupa, Dimitrios Liakos, and Spyridon Rapsomanikis. 2022. "The Effect of Students, Computers, and Air Purifiers on Classroom Air Quality" Applied Sciences 12, no. 23: 11911. https://doi.org/10.3390/app122311911
APA StyleDabanlis, G., Loupa, G., Liakos, D., & Rapsomanikis, S. (2022). The Effect of Students, Computers, and Air Purifiers on Classroom Air Quality. Applied Sciences, 12(23), 11911. https://doi.org/10.3390/app122311911